回顾一下岭回归,岭回归的目的是学习得到特征和因变量之间的映射关系,由于特征可能很高维,所以需要正则化

岭回归的目标函数是

$$ \sum_{i=1}^n \left\|y-X\beta\right\|^2+\lambda\beta^T\beta $$

由于数据可能是非线性的,单纯的线性回归效果可能不是很好,因此可以把数据映射到一个核空间,使得数据在这个核空间里面线性可分。

设核函数为$\Phi_i=\Phi(x_i)$,$\Phi_i$是一个$d$维空间中的向量,通常$d$比原来的维数高,甚至可以到无穷维。可以认为$\Phi_i$是核空间中$x_i$的一组特征,我们在核空间里对这组特征进行线性回归,原理和岭回归是一样的,因此可以直接套用岭回归的目标函数

$$ \sum_{i=1}^n \left\|y-\Phi\beta\right\|^2+\lambda\beta^T\beta $$

由正规方程解得$\beta=(\Phi^T\Phi+\lambda I_d)^{-1}\Phi^Ty$

由于$\Phi_i$可能达到无穷维,直接求逆比较困难,且效率较低。因此需要用到下面的小技巧

$$ (P^{-1}+B^TR^{-1}B)^{-1}B^TR^{-1}=PB^T(BPB^T+R)^{-1}$$

上式中,令$B=\Phi,P=\frac{1}{\lambda}I_d,R=I_n$,则有

$$\begin{align*} \beta &= \frac{1}{\lambda}\Phi^T(\frac{1}{\lambda}\Phi\Phi^T+I_n)^{-1}y\\&=\frac{1}{\lambda}\Phi(\frac{1}{\lambda}[\Phi\Phi^T+\lambda I_n])^{-1}y\\&=\frac{1}{\lambda}\Phi^T(\frac{1}{\lambda})^{-1}(\Phi\Phi^T+\lambda I_n)^{-1}y\\&=\Phi^T(\Phi\Phi^T+\lambda I_n)^{-1}y \end{align*}$$

令$\alpha=(\Phi\Phi^T+\lambda I_n)^{-1}y\quad\in\mathbb{R}^{n\times 1}$,则$\beta=\Phi^T\alpha=[\Phi_1,\Phi_2,...,\Phi_n]\alpha=\sum_{i=1}^n \alpha_i\Phi_i$

$K=\Phi\Phi^T\in\mathbb{R}^{n\times n}$称为gram矩阵,且$K_{ij}=\Phi_i^T\Phi_j$。

$$ y_i=\beta^T\Phi_i=y^T(K+\lambda I_n)^{-1}\Phi\Phi_i = y^T(K+\lambda I_n)^{-1}K_i $$

其中$K_i$是$K$的第$i$列

Kernel Ridge Regression的更多相关文章

  1. support vector regression与 kernel ridge regression

    前一篇,我们将SVM与logistic regression联系起来,这一次我们将SVM与ridge regression(之前的linear regression)联系起来. (一)kernel r ...

  2. Kernel ridge regression(KRR)

    作者:桂. 时间:2017-05-23  15:52:51 链接:http://www.cnblogs.com/xingshansi/p/6895710.html 一.理论描述 Kernel ridg ...

  3. 机器学习技法笔记:Homework #6 AdaBoost&Kernel Ridge Regression相关习题

    原文地址:http://www.jianshu.com/p/9bf9e2add795 AdaBoost 问题描述 程序实现 # coding:utf-8 import math import nump ...

  4. Ridge Regression and Ridge Regression Kernel

    Ridge Regression and Ridge Regression Kernel Reference: 1. scikit-learn linear_model ridge regressio ...

  5. Jordan Lecture Note-4: Linear & Ridge Regression

    Linear & Ridge Regression 对于$n$个数据$\{(x_1,y_1),(x_2,y_2),\cdots,(x_n,y_n)\},x_i\in\mathbb{R}^d,y ...

  6. Ridge Regression(岭回归)

    Ridge Regression岭回归 数值计算方法的"稳定性"是指在计算过程中舍入误差是可以控制的. 对于有些矩阵,矩阵中某个元素的一个很小的变动,会引起最后计算结果误差很大,这 ...

  7. Kernel Methods (3) Kernel Linear Regression

    Linear Regression 线性回归应该算得上是最简单的一种机器学习算法了吧. 它的问题定义为: 给定训练数据集\(D\), 由\(m\)个二元组\(x_i, y_i\)组成, 其中: \(x ...

  8. Kernel Logestic Regression

    一.把 soft margin svm 看做 L2 Regression 模型 先来一张图回顾一下之前都学了些什么: 之前我们是通过拉格朗日乘子法来进行soft Margin Svm的转化问题,现在换 ...

  9. Probabilistic SVM 与 Kernel Logistic Regression(KLR)

    本篇讲的是SVM与logistic regression的关系. (一) SVM算法概论 首先我们从头梳理一下SVM(一般情况下,SVM指的是soft-margin SVM)这个算法. 这个算法要实现 ...

随机推荐

  1. SQL执行一次INSERT INTO查询,插入多行记录

    那如果我们想插入多行记录呢?可能你会想到多次运行INSERT语句即可,就像下面的php代码示例: INSERT INTO tbl_name (col1,col2) VALUES (,); 那如果我们想 ...

  2. Redis - 数据类型常用命令

    5种数据类型都离不开key,先列出key的相关命令. KEY相关操作 列出符合规则的KEYS KEYS pattern pattern支持glob风格的通配符格式,即: ? 一个字符 * 任意多个字符 ...

  3. C#,动态加载DLL,通过反射,调用参数,方法,窗体

    .net中常会用到动态加载DLL,而DLL中可能包含各种参数.方法.窗体,如何来调用动态加载这些参数.方法.窗体呢? 在C#中,我们要使用反射,首先要搞清楚以下命名空间中几个类的关系: System. ...

  4. node版本的切换(转)

    大量开发者的贡献使Node版本的迭代速度很快,版本很多(横跨0.6到0.11),所以升级Node版本就成为了一个问题.目前有n和nvm这两个工具可以对Node进行无痛升级,本文简单介绍一下二者的使用. ...

  5. ReentrantReadWriteLock简介

    对象的方法中一旦加入synchronized修饰,则任何时刻只能有一个线程访问synchronized修饰的方法.假设有个数据对象拥有写方法与读方法,多线程环境中要想保证数据的安全,需对该对象的读写方 ...

  6. Java 集合类常用方法

    Collection中的contains()方法和remove()方法. boolean contains(Object o);该方法是用来判断集合中是否包含某个元素,若包含,返回true,不包含返回 ...

  7. Java温故而知新(3)异常处理机制

    异常处理是程序设计中一个非常重要的方面,也是程序设计的一大难点,从C开始,你也许已经知道如何用if...else...来控制异常了,也许是自发的,然而这种控制异常痛苦,同一个异常或者错误如果多个地方出 ...

  8. CF Dima and Salad 01背包

    C. Dima and Salad time limit per test 1 second memory limit per test 256 megabytes input standard in ...

  9. Android源码下编译APK步骤

    1.进入android源码目录下的build下执行:source envsetup.sh 后继续在该路径下执行lunch. 2.编写完成工程 3.编写Android.mk文件,放入工程目录下     ...

  10. 原生JS编写getByClass、addClass、removeClass、hasClass

    前言: 年后换了工作,在现在的公司写交互主要使用JS原生:刚刚入门前端的时候写交互一直用的原生JS,虽然用的不怎么样.后来去之前的公司之后,leader主张把jQuery用好,JS原生自然就熟练了:一 ...