AlexNet 分类 FashionMNIST
from mxnet import gluon,init,nd,autograd
from mxnet.gluon import data as gdata,nn
from mxnet.gluon import loss as gloss
import mxnet as mx
import time
import os
import sys # 建立网络
net = nn.Sequential()
# 使用较大的 11 x 11 窗口来捕获物体。同时使用步幅 4 来较大减小输出高和宽。
# 这里使用的输入通道数比 LeNet 中的也要大很多。
net.add(nn.Conv2D(96, kernel_size=11, strides=4, activation='relu'),
nn.MaxPool2D(pool_size=3, strides=2),
# 减小卷积窗口,使用填充为 2 来使得输入输出高宽一致,且增大输出通道数。
nn.Conv2D(256, kernel_size=5, padding=2, activation='relu'),
nn.MaxPool2D(pool_size=3, strides=2),
# 连续三个卷积层,且使用更小的卷积窗口。除了最后的卷积层外,进一步增大了输出通道数。
# 前两个卷积层后不使用池化层来减小输入的高和宽。
nn.Conv2D(384, kernel_size=3, padding=1, activation='relu'),
nn.Conv2D(384, kernel_size=3, padding=1, activation='relu'),
nn.Conv2D(256, kernel_size=3, padding=1, activation='relu'),
nn.MaxPool2D(pool_size=3, strides=2),
# 这里全连接层的输出个数比 LeNet 中的大数倍。使用丢弃层来缓解过拟合。
nn.Dense(4096, activation="relu"), nn.Dropout(0.5),
nn.Dense(4096, activation="relu"), nn.Dropout(0.5),
# 输出层。由于这里使用 Fashion-MNIST,所以用类别数为 10,而非论文中的 1000。
nn.Dense(10)) X = nd.random.uniform(shape=(1,1,224,224))
net.initialize()
for layer in net:
X = layer(X)
print(layer.name,'output shape:\t',X.shape) # 读取数据
# fashionMNIST 28*28 转为224*224
def load_data_fashion_mnist(batch_size, resize=None, root=os.path.join(
'~', '.mxnet', 'datasets', 'fashion-mnist')):
root = os.path.expanduser(root) # 展开用户路径 '~'。
transformer = []
if resize:
transformer += [gdata.vision.transforms.Resize(resize)]
transformer += [gdata.vision.transforms.ToTensor()]
transformer = gdata.vision.transforms.Compose(transformer)
mnist_train = gdata.vision.FashionMNIST(root=root, train=True)
mnist_test = gdata.vision.FashionMNIST(root=root, train=False)
num_workers = 0 if sys.platform.startswith('win32') else 4
train_iter = gdata.DataLoader(
mnist_train.transform_first(transformer), batch_size, shuffle=True,
num_workers=num_workers)
test_iter = gdata.DataLoader(
mnist_test.transform_first(transformer), batch_size, shuffle=False,
num_workers=num_workers)
return train_iter, test_iter batch_size = 128
train_iter, test_iter = load_data_fashion_mnist(batch_size, resize=224) def accuracy(y_hat,y):
return (y_hat.argmax(axis=1)==y.astype('float32')).mean().asscalar() def evaluate_accuracy(data_iter,net,ctx):
acc = nd.array([0],ctx=ctx)
for X,y in data_iter:
X = X.as_in_context(ctx)
y = y.as_in_context(ctx)
acc+=accuracy(net(X),y)
return acc.asscalar() / len(data_iter) # 训练模型
def train(net,train_iter,test_iter,batch_size,trainer,ctx,num_epochs):
print('training on',ctx)
loss = gloss.SoftmaxCrossEntropyLoss() for epoch in range(num_epochs):
train_l_sum = 0
train_acc_sum = 0
start = time.time()
for X,y in train_iter:
X = X.as_in_context(ctx)
y = y.as_in_context(ctx) with autograd.record():
y_hat = net(X)
l = loss(y_hat,y) l.backward()
trainer.step(batch_size) train_l_sum += l.mean().asscalar()
train_acc_sum += evaluate_accuracy(test_iter,net,ctx)
test_acc = evaluate_accuracy(test_iter,net,ctx)
print('epoch %d, loss %.4f, train acc %.3f, test acc %.3f, '
'time %.1f sec' % (epoch+1,train_l_sum/len(train_iter),test_acc,time.time()-start)) def try_gpu():
try:
ctx = mx.gpu()
_ = nd.zeros((1,),ctx=ctx)
except mx.base.MXNetError:
ctx = mx.cpu()
return ctx lr = 0.01
num_epochs = 5
ctx = try_gpu() net.initialize(force_reinit=True,ctx=ctx,init=init.Xavier())
trainer = gluon.Trainer(net.collect_params(),'sgd',{'learning_rate':lr})
train(net,train_iter,test_iter,batch_size,trainer,ctx,num_epochs)
AlexNet 分类 FashionMNIST的更多相关文章
- LeNet 分类 FashionMNIST
import mxnet as mx from mxnet import autograd, gluon, init, nd from mxnet.gluon import loss as gloss ...
- gluon 实现多层感知机MLP分类FashionMNIST
from mxnet import gluon,init from mxnet.gluon import loss as gloss, nn from mxnet.gluon import data ...
- gluon实现softmax分类FashionMNIST
from mxnet import gluon,init from mxnet.gluon import loss as gloss,nn from mxnet.gluon import data a ...
- PyTorch 介绍 | BUILD THE NEURAL NETWORK
神经网络由对数据进行操作的layers/modules组成.torch.nn 命名空间提供了所有你需要的构建块,用于构建你自己的神经网络.PyTorch的每一个module都继承自nn.Module. ...
- Pytorch分类和准确性评估--基于FashionMNIST数据集
最近在学习Pytorch v1.3最新版和Tensorflow2.0. 我学习Pytorch的主要途径:莫烦Python和Pytorch 1.3官方文档 ,Pytorch v1.3跟之前的Pytorc ...
- 【分类】AlexNet论文总结
目录 0. 论文链接 1. 概述 2. 对数据集的处理 3. 网络模型 3.1 ReLU Nonlinearity 3.2 Training on multiple GPUs 3.3 Local Re ...
- AlexNet实现cifar10数据集分类
import tensorflow as tf import os from matplotlib import pyplot as plt import tensorflow.keras.datas ...
- 从头学pytorch(十五):AlexNet
AlexNet AlexNet是2012年提出的一个模型,并且赢得了ImageNet图像识别挑战赛的冠军.首次证明了由计算机自动学习到的特征可以超越手工设计的特征,对计算机视觉的研究有着极其重要的意义 ...
- 《动手学深度学习》系列笔记—— 1.2 Softmax回归与分类模型
目录 softmax的基本概念 交叉熵损失函数 模型训练和预测 获取Fashion-MNIST训练集和读取数据 get dataset softmax从零开始的实现 获取训练集数据和测试集数据 模型参 ...
随机推荐
- c++字符前面的L和_T
字符串前面加L表示该字符串是Unicode字符串._T是一个宏,如果项目使用了Unicode字符集(定义了UNICODE宏),则自动在字符串前面加上L,否则字符串不变.因此,Visual C++里边定 ...
- ansible roles 目录规范
我的ansible roles项目的目录结构: (ansible_venv) [root@localhost ansible_home]# tree ansible_playbooks/ ansibl ...
- SQLite.dll在xp中部署时的报错处理
错误信息: System.IO.FileNotFoundException: Could not load file or assembly 'System.Data.SQLite.dll' or o ...
- C# Windows服务创建应用
创建项目 1.创建windows服务项目 2.右键点击Service1.cs,查看代码, 用于编写操作逻辑代码 3.OnStart函数在启动服务时执行,OnStop函数在停止服务时执行.代码中OnSt ...
- redis(1)简介
一.nosql简介 RDBMS(关系型数据库)提供的结构化编程,让数据建模以及应用程序编程变得非常简单,带来了非常高的经济效益,并且学习成本也比较低.但在当今数据大爆炸时代,每时每刻都会海量的数据产生 ...
- AtomicInteger关键字
validate 关键字可以保证多线程之间的可见性,但是不能保证原子操作.(需要了解java内存模型jmm) package com.cn.test.thread; public class Vola ...
- Java--详解WebService技术
Java--详解WebService技术 一.什么是 webservice WebService是一种跨编程语言和跨操作系统平台的远程调用技术. 所谓跨编程语言和跨操作平台,就是说服务端程序采用jav ...
- HOST文件配置
HOST文件配置位置:C:\Windows\System32\drivers\etc\HOSTS 127.0.0.1 localhost 127.0.0.1 app.weilan.com 127.0. ...
- js对象之间的继承
js的对象之间的继承抛弃了原型与构造器的概念,而转为字面量对象之间进行属性拷贝的方式进行继承. 首先我们来写一个封装好的继承函数: function extend(parent){ var child ...
- JavaScript的进阶之路(三)引用类型之Object类型和Array类型
引用类型 Object类型 function a(num){ if(num>3){ a(--num); } console.log(num); } a(5); //如何创建对象的实例 var o ...