用“倍增法”求最近公共祖先(LCA)
1.最近公共祖先:对于有根树T的两个结点u、v,最近公共祖先LCA(T,u,v)表示一个结点x,满足x是u、的祖先且x的深度尽可能大。
2.朴素算法:记录下每个节点的父亲,使节点u,v一步一步地向上找父亲,直到找到相同的“祖先”,即是所求的答案,时间复杂度O(n)。
3.优化算法(倍增法):利用二进制的思想,想办法使一步一步向上搜变成以2^k地向上跳。所以定义一个P[][]数组,使p[i][j]表示节点i的2^j倍祖先,因此p[i][0]即为i的父亲。我们可以得到一个递推式p[i][j]=p[p[i][j-1]][j-1]。这样子一个O(NlogN)的预处理(dfs)的 2^k 的祖先。定义一个deep[]数组表示节点深度,先判断是否 deep[u] > deep[v]果是的话就交换一下(保证 u的深度小于 v方便下面的操作)然后把u到与v同深度,同深度以后再把u v同时往上调(dec(j)) 调到有一个最小的j 满足: p[u] [j]!=p[v][j],u,v是在不断更新的 最后把u,v 往上调 (u=p[u,0] v=p [v,0]) 一个一个向上调直到 u= v 这时 u or v就是公共祖先。复杂度:O(logn)
下面给出 LCA 的模板:
输入:第一行:N,M,Q (因为是一棵树,所以M==N-1)
接下来M 行: u, v, c ,表示u到v连一条权值为c的边
接下来Q行:u, v 表示寻求u,v的最近公共祖先,u~v的距离,u~v之间的路径的最大权值
输出:共Q行,对应上述的询问
#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cmath>
#include<algorithm>
#include<cstring>
#include<vector>
#include<queue>
using namespace std;
const int maxn=;
inline int read(){
int x=,f=;char ch=getchar();
while(ch<''||ch>''){if(ch=='-')f=-;ch=getchar();}
while(ch>=''&&ch<=''){x=x*+ch-'';ch=getchar();}
return x*f;
}
int N,M,Q;
vector<int> to[maxn],cost[maxn];
int p[maxn][],MAX[maxn][],sum[maxn][];
int dep[maxn];
inline void dfs(int root){
for(int i=;i<to[root].size();i++){
int y=to[root][i];
if(y!=p[root][]){
dep[y]=dep[root]+;
p[y][]=root;
MAX[y][]=cost[root][i];
sum[y][]=cost[root][i];
for(int k=;k<=30;k++){
int zu=<<k;
if(zu<=dep[y]){
p[y][k]=p[p[y][k-]][k-];
MAX[y][k]=max(MAX[y][k-],MAX[p[y][k-]][k-]);
sum[y][k]=sum[y][k-]+sum[p[y][k-]][k-];
}
}
dfs(y);
}
}
}
inline void LCA(int x,int y){
int ans1=,ans2=;
if(dep[x]>dep[y]) swap(x,y);
int delta=dep[y]-dep[x];
for(int i=;i<=;i++){
int h=<<i; h=hδ
if(h!=){
ans1+=sum[y][i]; ans2=max(ans2,MAX[y][i]);
y=p[y][i];
}
}
if(x==y){
cout<<x<<" "<<ans1<<" "<<ans2<<endl;
return ;
}
for(int i=;i>=;i--){
if(p[y][i]!=p[x][i]){
ans1+=sum[x][i]; ans1+=sum[y][i];
ans2=max(ans2,MAX[x][i]); ans2=max(ans2,MAX[y][i]);
x=p[x][i]; y=p[y][i];
}
}
ans1+=sum[x][]; ans1+=sum[y][];
ans2=max(ans2,MAX[x][]); ans2=max(ans2,MAX[y][]);
cout<<p[x][]<<" "<<ans1<<" "<<ans2<<endl;
}
int main(){
N=read(); M=read(); Q=read();
for(int i=;i<=M;i++){
int u,v,c;
u=read(); v=read(); c=read();
to[u].push_back(v); to[v].push_back(u);
cost[u].push_back(c); cost[v].push_back(c);
}
p[][]=-; dep[]=;
dfs();
for(int i=;i<=Q;i++){
int u,v;
u=read(); v=read();
LCA(u,v);
}
return ;
}
用“倍增法”求最近公共祖先(LCA)的更多相关文章
- LCA 在线倍增法 求最近公共祖先
第一步:建树 这个就不说了 第二部:分为两步 分别是深度预处理和祖先DP预处理 DP预处理: int i,j; ;(<<j)<n;j++) ;i<n;++i) ) fa[i ...
- 求最近公共祖先(LCA)的各种算法
水一发题解. 我只是想存一下树剖LCA的代码...... 以洛谷上的这个模板为例:P3379 [模板]最近公共祖先(LCA) 1.朴素LCA 就像做模拟题一样,先dfs找到基本信息:每个节点的父亲.深 ...
- 倍增法求lca(最近公共祖先)
倍增法求lca(最近公共祖先) 基本上每篇博客都会有参考文章,一是弥补不足,二是这本身也是我学习过程中找到的觉得好的资料 思路: 大致上算法的思路是这样发展来的. 想到求两个结点的最小公共祖先,我们可 ...
- 最近公共祖先 LCA 倍增算法
树上倍增求LCA LCA指的是最近公共祖先(Least Common Ancestors),如下图所示: 4和5的LCA就是2 那怎么求呢?最粗暴的方法就是先dfs一次,处理出每个点的深度 ...
- 倍增法求LCA
倍增法求LCA LCA(Least Common Ancestors)的意思是最近公共祖先,即在一棵树中,找出两节点最近的公共祖先. 倍增法是通过一个数组来实现直接找到一个节点的某个祖先,这样我们就可 ...
- 【LCA求最近公共祖先+vector构图】Distance Queries
Distance Queries 时间限制: 1 Sec 内存限制: 128 MB 题目描述 约翰的奶牛们拒绝跑他的马拉松,因为她们悠闲的生活不能承受他选择的长长的赛道.因此他决心找一条更合理的赛道 ...
- 【lhyaaa】最近公共祖先LCA——倍增!!!
高级的算法——倍增!!! 根据LCA的定义,我们可以知道假如有两个节点x和y,则LCA(x,y)是 x 到根的路 径与 y 到根的路径的交汇点,同时也是 x 和 y 之间所有路径中深度最小的节 点,所 ...
- HDU 2586 倍增法求lca
How far away ? Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)To ...
- 最近公共祖先(LCA)的三种求解方法
转载来自:https://blog.andrewei.info/2015/10/08/e6-9c-80-e8-bf-91-e5-85-ac-e5-85-b1-e7-a5-96-e5-85-88lca- ...
随机推荐
- Mysql event时间触发器,实现定时修改某些符合某一条件的某一字段
我最近做项目遇到一个问题就是数据库的的订单需要定时检查自己的订单状态,如果到了endtime字段的时间订单状态还是2,就将订单状态修改为4 在网上找到类似的解决方法. 定时的关键是要结合mysql的某 ...
- elasticsearch.net search入门使用指南中文版
原文:http://edu.dmeiyang.com/book/nestusing.html elasticsearch.net为什么会有两个客户端? Elasticsearch.Net是一个非常底层 ...
- 63、具有过渡动画效果的布局Layout
下面,下来看一个Demo的效果,代码如下: <FrameLayout xmlns:android="http://schemas.android.com/apk/res/android ...
- Android实例-多窗口的切换
Android实例-多窗口的切换 1.图片一是程序运行后的界面. 2.图片二是点击"非模态显示"的界面. 3.图片三是点击"模诚显示"的界面(提示平台不支持). ...
- JZOJ.5281【NOIP2017模拟8.15】钦点
Description
- [LintCode] 第k大元素
基于快速排序: class Solution { public: /* * param k : description of k * param nums : description of array ...
- 【Lombok】了解
项目中使用了 Lombok ,对象无需写get set 等方法,一个注释便可以搞定.IDEA中项目报错,下载对应插件(Lombok Plugin)就好了.很神奇,就了解一下: 官网: Project ...
- 只有ReflectionOnlyLoadFrom才可以拯救与GAC冲突的强命名程序集
先说结论,如果有两个拥有相同程序集名称的强命名程序集,一个在GAC里,一个不在.怎样动态加载那个不在GAC里的程序集?答案就是只有Assembly.ReflectionOnlyLoadFrom才可以加 ...
- DKLang Translation Editor
https://yktoo.com/en/software/dklang-traned Features Translation using a dictionary (so-called Trans ...
- 详细介绍Redis的几种数据结构以及使用注意事项(转)
原文:详细介绍Redis的几种数据结构以及使用注意事项 1. Overview 1.1 资料 <The Little Redis Book>,最好的入门小册子,可以先于一切文档之前看,免费 ...