1.最近公共祖先:对于有根树T的两个结点u、v,最近公共祖先LCA(T,u,v)表示一个结点x,满足x是u、的祖先且x的深度尽可能大。

2.朴素算法:记录下每个节点的父亲,使节点u,v一步一步地向上找父亲,直到找到相同的“祖先”,即是所求的答案,时间复杂度O(n)。

3.优化算法(倍增法):利用二进制的思想,想办法使一步一步向上搜变成以2^k地向上跳所以定义一个P[][]数组,使p[i][j]表示节点i的2^j倍祖先,因此p[i][0]即为i的父亲。我们可以得到一个递推式p[i][j]=p[p[i][j-1]][j-1]。这样子一个O(NlogN)的预处理(dfs)的 2^k 的祖先。定义一个deep[]数组表示节点深度,先判断是否 deep[u] > deep[v]果是的话就交换一下(保证 u的深度小于 v方便下面的操作)然后把u到与v同深度,同深度以后再把u v同时往上调(dec(j)) 调到有一个最小的j 满足: p[u] [j]!=p[v][j],u,v是在不断更新的   最后把u,v 往上调 (u=p[u,0] v=p [v,0]) 一个一个向上调直到   u= v 这时 u or v就是公共祖先。复杂度:O(logn)

下面给出 LCA 的模板:

输入:第一行:N,M,Q     (因为是一棵树,所以M==N-1)

接下来M 行: u, v, c ,表示u到v连一条权值为c的边

接下来Q行:u, v 表示寻求u,v的最近公共祖先,u~v的距离,u~v之间的路径的最大权值

输出:共Q行,对应上述的询问

 #include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cmath>
#include<algorithm>
#include<cstring>
#include<vector>
#include<queue>
using namespace std;
const int maxn=;
inline int read(){
int x=,f=;char ch=getchar();
while(ch<''||ch>''){if(ch=='-')f=-;ch=getchar();}
while(ch>=''&&ch<=''){x=x*+ch-'';ch=getchar();}
return x*f;
}
int N,M,Q;
vector<int> to[maxn],cost[maxn];
int p[maxn][],MAX[maxn][],sum[maxn][];
int dep[maxn];
inline void dfs(int root){
for(int i=;i<to[root].size();i++){
int y=to[root][i];
if(y!=p[root][]){
dep[y]=dep[root]+;
p[y][]=root;
MAX[y][]=cost[root][i];
sum[y][]=cost[root][i];
for(int k=;k<=30;k++){
int zu=<<k;
if(zu<=dep[y]){
p[y][k]=p[p[y][k-]][k-];
MAX[y][k]=max(MAX[y][k-],MAX[p[y][k-]][k-]);
sum[y][k]=sum[y][k-]+sum[p[y][k-]][k-];
}
}
dfs(y);
}
}
}
inline void LCA(int x,int y){
int ans1=,ans2=;
if(dep[x]>dep[y]) swap(x,y);
int delta=dep[y]-dep[x];
for(int i=;i<=;i++){
int h=<<i; h=h&delta;
if(h!=){
ans1+=sum[y][i]; ans2=max(ans2,MAX[y][i]);
y=p[y][i];
}
}
if(x==y){
cout<<x<<" "<<ans1<<" "<<ans2<<endl;
return ;
}
for(int i=;i>=;i--){
if(p[y][i]!=p[x][i]){
ans1+=sum[x][i]; ans1+=sum[y][i];
ans2=max(ans2,MAX[x][i]); ans2=max(ans2,MAX[y][i]);
x=p[x][i]; y=p[y][i];
}
}
ans1+=sum[x][]; ans1+=sum[y][];
ans2=max(ans2,MAX[x][]); ans2=max(ans2,MAX[y][]);
cout<<p[x][]<<" "<<ans1<<" "<<ans2<<endl;
}
int main(){
N=read(); M=read(); Q=read();
for(int i=;i<=M;i++){
int u,v,c;
u=read(); v=read(); c=read();
to[u].push_back(v); to[v].push_back(u);
cost[u].push_back(c); cost[v].push_back(c);
}
p[][]=-; dep[]=;
dfs();
for(int i=;i<=Q;i++){
int u,v;
u=read(); v=read();
LCA(u,v);
}
return ;
}

用“倍增法”求最近公共祖先(LCA)的更多相关文章

  1. LCA 在线倍增法 求最近公共祖先

    第一步:建树  这个就不说了 第二部:分为两步  分别是深度预处理和祖先DP预处理 DP预处理: int i,j; ;(<<j)<n;j++) ;i<n;++i) ) fa[i ...

  2. 求最近公共祖先(LCA)的各种算法

    水一发题解. 我只是想存一下树剖LCA的代码...... 以洛谷上的这个模板为例:P3379 [模板]最近公共祖先(LCA) 1.朴素LCA 就像做模拟题一样,先dfs找到基本信息:每个节点的父亲.深 ...

  3. 倍增法求lca(最近公共祖先)

    倍增法求lca(最近公共祖先) 基本上每篇博客都会有参考文章,一是弥补不足,二是这本身也是我学习过程中找到的觉得好的资料 思路: 大致上算法的思路是这样发展来的. 想到求两个结点的最小公共祖先,我们可 ...

  4. 最近公共祖先 LCA 倍增算法

          树上倍增求LCA LCA指的是最近公共祖先(Least Common Ancestors),如下图所示: 4和5的LCA就是2 那怎么求呢?最粗暴的方法就是先dfs一次,处理出每个点的深度 ...

  5. 倍增法求LCA

    倍增法求LCA LCA(Least Common Ancestors)的意思是最近公共祖先,即在一棵树中,找出两节点最近的公共祖先. 倍增法是通过一个数组来实现直接找到一个节点的某个祖先,这样我们就可 ...

  6. 【LCA求最近公共祖先+vector构图】Distance Queries

    Distance Queries 时间限制: 1 Sec  内存限制: 128 MB 题目描述 约翰的奶牛们拒绝跑他的马拉松,因为她们悠闲的生活不能承受他选择的长长的赛道.因此他决心找一条更合理的赛道 ...

  7. 【lhyaaa】最近公共祖先LCA——倍增!!!

    高级的算法——倍增!!! 根据LCA的定义,我们可以知道假如有两个节点x和y,则LCA(x,y)是 x 到根的路 径与 y 到根的路径的交汇点,同时也是 x 和 y 之间所有路径中深度最小的节 点,所 ...

  8. HDU 2586 倍增法求lca

    How far away ? Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)To ...

  9. 最近公共祖先(LCA)的三种求解方法

    转载来自:https://blog.andrewei.info/2015/10/08/e6-9c-80-e8-bf-91-e5-85-ac-e5-85-b1-e7-a5-96-e5-85-88lca- ...

随机推荐

  1. 你不知道的Console命令

    一.显示信息的命令 1: <!DOCTYPE html> 2: <html> 3: <head> 4: <title>常用console命令</t ...

  2. Linux下tomcat相关操作

    tomcat安装: 直接到官网下载tar包解压即可. tomcat相关操作: 首先,进入Tomcat下的bin目录,例如:cd /usr/tomcat/bin 启动Tomcat:./startup.s ...

  3. 下载xftp,xshell进行与linux端的远程操作

    在window下下载xftp5和xshell5 xshell主要是对远程的及其进行访问,在远程的情况下进行操作 xftp可以对远程的机器进行文件传输. 我安装这两个是单个的安装的. 进入官网 http ...

  4. cocos3.x 接入微信无法调用回调函数onResp的问题

    要想顺利调用必须保证一下几点: 1.WXEntryActivity的包名必须正确,格式为你的APK包名+wxapi.WXEntryActivity(注意:是apk包名,而不是org.cocos2dx. ...

  5. [MongoDB]学习笔记--基本操作

    读取 db.collection.find() db.users.find( { age: {$gt: }}, {name: , address: } ).limit().sort({age:1}) ...

  6. zookeeper 事务日志与快照日志

    zookeeper日志各类日志简介 zookeeper服务器会产生三类日志:事务日志.快照日志和log4j日志. 在zookeeper默认配置文件zoo.cfg(可以修改文件名)中有一个配置项data ...

  7. vmware key

    VMware vRealize Suite 2017 Enterprise   N04CL-09H9H-J89DJ-0KCH6-90N0J VMware vRealize Operations Man ...

  8. 微软Build 2017开发者大会午夜趴

    时间:2017年5月10号半夜 地点:微软中关村会议室 一年一度的Build大会,微软今年特地组织了一波粉丝到“现场”远程观摩keynote直播,同时在新浪直播间里也有相应的专家进行同步翻译和讲(tu ...

  9. C#操作AD及Exchange Server总结(二)

    上一节C#操作AD及Exchange Server总结(一)写了对AD的操作,新建AD用户后,通常都需要为此用户开启Exchange邮箱,接下来写如何远程操作Exchange. 三.对Exchange ...

  10. ChannelOption用到的socket的标准参数

    ChannelOption.SO_BACKLOG, 1024 BACKLOG用于构造服务端套接字ServerSocket对象,标识当服务器请求处理线程全满时,用于临时存放已完成三次握手的请求的队列的最 ...