Palindromic Substring


Time Limit: 10 Seconds      Memory Limit: 65536 KB


In the kingdom of string, people like palindromic strings very much. They like only palindromic strings and dislike all other strings. There is a unified formula to calculate the score
of a palindromic string. The score is calculated by applying the following three steps.

  1. Since a palindromic string is symmetric, the second half(excluding the middle of the string if the length is odd) is got rid of, and only the rest is considered. For example, "abba" becomes "ab", "aba" becomes "ab" and "abacaba" becomes "abac".
  2. Define some integer values for 'a' to 'z'.
  3. Treat the rest part as a 26-based number M and the score is M modulo 777,777,777.

However different person may have different values for 'a' to 'z'. For example, if 'a' is defined as 3, 'b' is defined as 1 and c is defined as 4, then the string "accbcca" has the score
(3×263+4×262+4×26+1) modulo 777777777=55537.

One day, a very long string S is discovered and everyone in the kingdom wants to know that among all the palindromic substrings of S, what the one with the K-th
smallest score is.

Input

The first line contains an integer T(1 ≤ T ≤ 20), the number of test cases.

The first line in each case contains two integers n, m(1 ≤ n ≤ 100000, 1 ≤ m ≤ 20) where n is the length of S and m is
the number of people in the kingdom. The second line is the string S consisting of only lowercase letters. The next m lines each containing 27 integers describes a person in the following format.

Ki va vb ... vz

where va is the value of 'a' for the person, vb is the value of 'b' and so on. It is ensured that the Ki-th smallest palindromic substring
exists and va, vb, ..., vz are in the range of [0, 26). But the values may coincide.

Output

For each person, output the score of the K-th smallest palindromic substring in one line. Print a blank line after each case.

Sample Input

3
6 2
abcdca
3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
7 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
4 10
zzzz
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 14
2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 14
3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 14
4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 14
5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 14
6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 14
7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 14
8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 14
9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 14
10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 14
51 4
abcdefghijklmnopqrstuvwxyzyxwvutsrqponmlkjihgfedcba
1 1 3 3 25 20 25 21 7 0 9 7 3 16 15 14 19 5 19 19 19 22 8 23 2 4 1
25 1 3 3 25 20 25 21 7 0 9 7 3 16 15 14 19 5 19 19 19 22 8 23 2 4 1
26 1 3 3 25 20 25 21 7 0 9 7 3 16 15 14 19 5 19 19 19 22 8 23 2 4 1
76 1 3 3 25 20 25 21 7 0 9 7 3 16 15 14 19 5 19 19 19 22 8 23 2 4 1

Sample Output

1
620 14
14
14
14
14
14
14
378
378
378 0
9
14 733665286 回文树
#include <iostream>
#include <string.h>
#include <stdlib.h>
#include <algorithm>
#include <stdio.h>
#include <math.h> using namespace std;
typedef long long int LL;
const int maxn=1e5+5;
const int mod=777777777;
char str[maxn];
int n,m;
LL k;
int a[26];
LL pow(int x)
{
LL sum=1;
LL n=26;
for(x;x;x>>=1)
{
if(x&1)
sum=(sum*n)%mod;
n=(n*n)%mod;
}
return sum;
}
struct Node
{
LL num;
LL sum;
}c[maxn];
int cmp(Node a,Node b)
{
return a.sum<b.sum;
}
struct Tree
{
int next[maxn][26];
int fail[maxn];
LL num[maxn];
int cnt[maxn];
int len[maxn];
int s[maxn];
int last,p,n;
int new_node(int x)
{
memset(next[p],0,sizeof(next[p]));
cnt[p]=0;
num[p]=0;
len[p]=x;
return p++;
}
void init()
{
p=0;
new_node(0);
new_node(-1);
last=0;
n=0;
s[0]=-1;
fail[0]=1;
}
int get_fail(int x)
{
while(s[n-len[x]-1]!=s[n])
x=fail[x];
return x;
}
int add(int x)
{
x-='a';
s[++n]=x;
int cur=get_fail(last);
if(!(last=next[cur][x]))
{
int now=new_node(len[cur]+2);
fail[now]=next[get_fail(fail[cur])][x];
next[cur][x]=now;
num[now]=(num[cur]+((LL)pow((len[cur]+1)/2)*a[x])%mod)%mod;
last=now;
}
cnt[last]++;
return 1;
}
void count()
{
for(int i=p-1;i>=0;i--)
cnt[fail[i]]+=cnt[i];
}
void fun()
{
count();
int cot=0;
for(int i=2;i<p;i++)
{
c[cot].num=cnt[i];
c[cot++].sum=num[i];
}
sort(c,c+cot,cmp);
int i;
for( i=0;i<cot;i++)
{
if(k>c[i].num)
{
k-=c[i].num;
}
else
break;
}
printf("%d\n",c[i].sum);
}
}tree;
int main()
{
int t;
scanf("%d",&t);
while(t--)
{
scanf("%d%d",&n,&m);
scanf("%s",str);
for(int i=1;i<=m;i++)
{
scanf("%lld",&k);
for(int j=0;j<26;j++)
scanf("%d",&a[j]);
tree.init();
for(int j=0;j<n;j++)
{
tree.add(str[j]);
}
tree.fun();
}
cout<<endl;
}
return 0;
}

ZOJ 3661 Palindromic Substring(回文树)的更多相关文章

  1. LeetCode 5. Longest Palindromic Substring & 回文字符串

    Longest Palindromic Substring 回文这种简单的问题,在C里面印象很深啊.希望能一次过. 写的时候才想到有两种情况: 454(奇数位) 4554(偶数位) 第1次提交 cla ...

  2. HDU5658:CA Loves Palindromic (回文树,求区间本质不同的回文串数)

    CA loves strings, especially loves the palindrome strings. One day he gets a string, he wants to kno ...

  3. HDU 5658 CA Loves Palindromic(回文树)

    CA Loves Palindromic Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 262144/262144 K (Java/O ...

  4. Palindromic Tree 回文自动机-回文树 例题+讲解

    回文树,也叫回文自动机,是2014年被西伯利亚民族发明的,其功能如下: 1.求前缀字符串中的本质不同的回文串种类 2.求每个本质不同回文串的个数 3.以下标i为结尾的回文串个数/种类 4.每个本质不同 ...

  5. 回文树 Palindromic Tree

    回文树 Palindromic Tree 嗯..回文树是个什么东西呢. 回文树(或者说是回文自动机)每个节点代表一个本质不同的回文串. 首先它类似字典树,每个节点有SIGMA个儿子,表示对应的字母. ...

  6. 回文树&后缀自动机&后缀数组

    KMP,扩展KMP和Manacher就不写了,感觉没多大意思.   之前感觉后缀自动机简直可以解决一切,所以不怎么写后缀数组.   马拉车主要是通过对称中心解决问题,有的时候要通过回文串的边界解决问题 ...

  7. 回文树练习 Part1

    URAL - 1960   Palindromes and Super Abilities 回文树水题,每次插入时统计数量即可. #include<bits/stdc++.h> using ...

  8. Gym - 101806Q:QueryreuQ(回文树)

    A string is palindrome, if the string reads the same backward and forward. For example, strings like ...

  9. 南京网络赛I-Skr【回文树模板】

    19.32% 1000ms 256000K A number is skr, if and only if it's unchanged after being reversed. For examp ...

随机推荐

  1. Mutex 进程间互斥

    学习Mutex的心得,不一定对,先记录一下. 同步技术分为两大类,锁定和信号同步. 锁定分为:Lock.Monitor 信号同步分为:AutoResetEvent.ManualResetEvent.S ...

  2. 简单的刚開始学习的人配置Android SDK+ADT+Eclipse

    1.下载JDK.Android SDK和Eclipse(Eclipse 版本号最好新一些) 注意:下载的SDK最好和后面的ADT配套,否则Eclipse可能会报错. 如:SDK 21.0.1 相应 A ...

  3. html5-表单常见操作

    <form  autocompelate="on" id="from1"><!--常用属性-->邮件:<input type=&q ...

  4. php对xml文件的增删改查

    源文件<?xml version="1.0" encoding="utf-8"?><root>  <endTime>2016 ...

  5. FPGA开发流程1(详述每一环节的物理含义和实现目标)

    要知道,要把一件事情做好,不管是做哪们技术还是办什么手续,明白这个事情的流程非常关键,它决定了这件事情的顺利进行与否.同样,我们学习FPGA开发数字系统这个技术,先撇开使用这个技术的基础编程语言的具体 ...

  6. .net SQL分页

    1.分页SQL declare @pagesize integer,@cpage integer; --变量定义 ; --页码大小 ; --当前页 ---@cpage 为 第一页的时候 --selec ...

  7. AES_CBC_PKCS5Padding 加密

    在项目中需要对一些关键信息进行传输,但又不能是明文,所以采用此种方式进行加密,另一端再进行解密. AES: 算法 CBC: 模式 ​ 使用CBC模式,需要一个向量iv,可增加加密算法的强度 PKCS5 ...

  8. 关于UNIX/Linux下安装《UNIX环境高级编程》源代码的问题

    <UNIX环境高级编程(第三版)>是一本广为人知的unix系统编程书籍. 但是,书中的代码示例,要想正确的编译运行,要先做好准备工作: 1.下载源代码 传送门:http://apueboo ...

  9. layui实现点击按钮添加行(方法渲染创建的table)

    / jquery实现的搜索功能 $('#search_btn').on('click',function(){ var txt=$('#inputValue').val(); var value=$( ...

  10. Java的ThreadContext类加载器的实现

    疑惑 以前在看源码的时候,总是会遇到框架里的代码使用Thread.currentThread.getContextClassLoader()获取当前线程的Context类加载器,通过这个Context ...