Hbase 布隆过滤器BloomFilter介绍
转载自:http://blog.csdn.net/opensure/article/details/46453681
1、主要功能
提高随机读的性能
2、存储开销
bloom filter的数据存在StoreFile的meta中,一旦写入无法更新,因为StoreFile是不可变的。Bloomfilter是一个列族(cf)级别的配置属性,如果你在表中设置了Bloomfilter,那么HBase会在生成StoreFile时包含一份bloomfilter结构的数据,称其为MetaBlock;MetaBlock与DataBlock(真实的KeyValue数据)一起由LRUBlockCache维护。所以,开启bloomfilter会有一定的存储及内存cache开销。
3、控制粒度
a)ROW
根据KeyValue中的row来过滤storefile
举例:假设有2个storefile文件sf1和sf2,
sf1包含kv1(r1 cf:q1 v)、kv2(r2 cf:q1 v)
sf2包含kv3(r3 cf:q1 v)、kv4(r4 cf:q1 v)
如果设置了CF属性中的bloomfilter为ROW,那么get(r1)时就会过滤sf2,get(r3)就会过滤sf1
b)ROWCOL
根据KeyValue中的row+qualifier来过滤storefile
举例:假设有2个storefile文件sf1和sf2,
sf1包含kv1(r1 cf:q1 v)、kv2(r2 cf:q1 v)
sf2包含kv3(r1 cf:q2 v)、kv4(r2 cf:q2 v)
如果设置了CF属性中的bloomfilter为ROW,无论get(r1,q1)还是get(r1,q2),都会读取sf1+sf2;而如果设置了CF属性中的bloomfilter为ROWCOL,那么get(r1,q1)就会过滤sf2,get(r1,q2)就会过滤sf1
4、常用场景
1、根据key随机读时,在StoreFile级别进行过滤
2、读数据时,会查询到大量不存在的key,也可用于高效判断key是否存在
5、举例说明
假设x、y、z三个key存在于table中,W不存在
使用Bloom Filter可以帮助我们减少为了判断key是否存在而去做Scan操作的次数
step1)分别对x、y、z运算hash函数取得bit mask,写到Bloom Filter结构中
step2)对W运算hash函数,从Bloom Filter查找bit mask
如果不存在:三个Bit位至少有一个为0,W肯定不存在该(Bloom Filter不会漏判)
如果存在 :三个Bit位全部全部等于1,路由到负责W的Region执行scan,确认是否真的存在(Bloom Filter有极小的概率误判)
6、源码解析
1.get操作会enable bloomfilter帮助剔除掉不会用到的Storefile
在scan初始化时(get会包装为scan)对于每个storefile会做shouldSeek的检查,如果返回false,则表明该storefile里没有要找的内容,直接跳过
if (memOnly == false
&& ((StoreFileScanner) kvs).shouldSeek(scan, columns)) {
scanners.add(kvs);
}
shouldSeek方法:如果是scan直接返回true表明不能跳过,然后根据bloomfilter类型检查。
if (!scan.isGetScan()) {
return true;
}
byte[] row = scan.getStartRow();
switch (this.bloomFilterType) {
case ROW:
return passesBloomFilter(row, 0, row.length, null, 0, 0); case ROWCOL:
if (columns != null && columns.size() == 1) {
byte[] column = columns.first();
return passesBloomFilter(row, 0, row.length, column, 0, column.length);
}
// For multi-column queries the Bloom filter is checked from the
// seekExact operation.
return true; default:
return true;
}
2.指明qualified的scan在配了rowcol的情况下会剔除不会用掉的StoreFile。
对指明了qualify的scan或者get进行检查:seekExactly
// Seek all scanners to the start of the Row (or if the exact matching row
// key does not exist, then to the start of the next matching Row).
if (matcher.isExactColumnQuery()) {
for (KeyValueScanner scanner : scanners)
scanner.seekExactly(matcher.getStartKey(), false);
} else {
for (KeyValueScanner scanner : scanners)
scanner.seek(matcher.getStartKey());
}
如果bloomfilter没命中,则创建一个很大的假的keyvalue,表明该storefile不需要实际的scan
public boolean seekExactly(KeyValue kv, boolean forward)
throws IOException {
if (reader.getBloomFilterType() != StoreFile.BloomType.ROWCOL ||
kv.getRowLength() == 0 || kv.getQualifierLength() == 0) {
return forward ? reseek(kv) : seek(kv);
} boolean isInBloom = reader.passesBloomFilter(kv.getBuffer(),
kv.getRowOffset(), kv.getRowLength(), kv.getBuffer(),
kv.getQualifierOffset(), kv.getQualifierLength());
if (isInBloom) {
// This row/column might be in this store file. Do a normal seek.
return forward ? reseek(kv) : seek(kv);
} // Create a fake key/value, so that this scanner only bubbles up to the top
// of the KeyValueHeap in StoreScanner after we scanned this row/column in
// all other store files. The query matcher will then just skip this fake
// key/value and the store scanner will progress to the next column.
cur = kv.createLastOnRowCol();
return true;
}
这边为什么是rowcol才能剔除storefile纳,很简单,scan是一个范围,如果是row的bloomfilter不命中只能说明该rowkey不在此storefile中,但next rowkey可能在。而rowcol的bloomfilter就不一样了,如果rowcol的bloomfilter没有命中表明该qualifiy不在这个storefile中,因此这次scan就不需要scan此storefile了!
7、总结
1.任何类型的get(基于rowkey或row+col)Bloom Filter的优化都能生效,关键是get的类型要匹配Bloom Filter的类型
2.基于row的scan是没办法走Bloom Filter的。因为Bloom Filter是需要事先知道过滤项的。对于顺序scan是没有事先办法知道rowkey的。而get是指明了rowkey所以可以用Bloom Filter,scan指明column同理。
3.row+col+qualify的scan可以去掉不存在此qualify的storefile,也算是不错的优化了,而且指明qualify也能减少流量,因此scan尽量指明qualify
Hbase 布隆过滤器BloomFilter介绍的更多相关文章
- HBase之八--(3):Hbase 布隆过滤器BloomFilter介绍
布隆过滤器( Bloom filters) 数据块索引提供了一个有效的方法,在访问一个特定的行时用来查找应该读取的HFile的数据块.但是它的效用是有限的.HFile数据块的默认大小是64KB,这个大 ...
- HBase - Filter - 过滤器的介绍以及使用 | 那伊抹微笑
博文作者:那伊抹微笑 csdn 博客地址:http://blog.csdn.net/u012185296 itdog8 地址链接 : http://www.itdog8.com/thread-214- ...
- 布隆过滤器(BloomFilter)持久化
摘要 Bloomfilter运行在一台机器的内存上,不方便持久化(机器down掉就什么都没啦),也不方便分布式程序的统一去重.我们可以将数据进行持久化,这样就克服了down机的问题,常见的持久化方法包 ...
- Spark布隆过滤器(bloomFilter)
数据过滤在很多场景都会应用到,特别是在大数据环境下.在数据量很大的场景实现过滤或者全局去重,需要存储的数据量和计算代价是非常庞大的.很多小伙伴第一念头肯定会想到布隆过滤器,有一定的精度损失,但是存储性 ...
- 白话布隆过滤器BloomFilter
通过本文将了解到以下内容: 查找问题的一般思路 布隆过滤器的基本原理 布隆过滤器的典型应用 布隆过滤器的工程实现 场景说明: 本文阐述的场景均为普通单机服务器.并非分布式大数据平台,因为在大数据平台下 ...
- 【浅析】|白话布隆过滤器BloomFilter
通过本文将了解到以下内容: 查找问题的一般思路 布隆过滤器的基本原理 布隆过滤器的典型应用 布隆过滤器的工程实现 场景说明: 本文阐述的场景均为普通单机服务器.并非分布式大数据平台,因为在大数据平台下 ...
- HBase - Filter - 过滤器的介绍以及使用
1 过滤器HBase 的基本 API,包括增.删.改.查等.增.删都是相对简单的操作,与传统的 RDBMS 相比,这里的查询操作略显苍白,只能根据特性的行键进行查询(Get)或者根据行键的范围来查询( ...
- 海量数据处理之布隆过滤器BloomFilter算法
Bloom Filter是由Bloom在1970年提出的一种多哈希函数映射的快速查找算法.通常应用在一些需要快速判断某个元素是否属于集合,但是并不严格要求100%正确的场合.使用场景:数据量为100亿 ...
- 一道腾讯面试题:如何快速判断某 URL 是否在 20 亿的网址 URL 集合中?布隆过滤器
何为布隆过滤器 还是以上面的例子为例: 判断逻辑: 多次哈希: Guava的BloomFilter 创建BloomFilter 最终还是调用: 使用: 算法特点 使用场景 假设遇到这样一个问题:一个网 ...
随机推荐
- Swift-8-枚举
// Playground - noun: a place where people can play import UIKit // 枚举语法 enum SomeEnumeration { // e ...
- Jmeter实现对字符串加密
最近测试移动端接口,但是请求内容是用MD5加密的,所以要先对请求内容进行加密,Jmeter内置的没有MD5加密方法,所以自己从网上copy了一份,实现了加密功能,以下是具体操作: 1.从网上copy了 ...
- Linux下面 多线程死锁问题的调试
最近写服务,经常是单进程,多线程的,加了各种锁,很担心出现死锁问题,专门学习了一下死锁问题的诊断. 死锁 (deallocks): 是指两个或两个以上的进程(线程)在执行过程中,因争夺资源而造成的一种 ...
- 【vijos】1768 顺序对的值(特殊的技巧)
https://vijos.org/p/1768 之前不知道为什么,我yy了一个n^2的做法,但是没能写出来..sad 然后看了题解才发现这题好神.. 为什么一定要照着题意找两个点然后算呢?这就是问题 ...
- 左萧龙(LZ)个人博客
网址(blog):http://www.cnblogs.com/zuoxiaolong/ 网站:http://www.zuoxiaolong.com/
- (转)java enum枚举
转载自: 原理:http://singleant.iteye.com/blog/686349 应用:http://www.cnblogs.com/happyPawpaw/archive/2013/04 ...
- git & github 菜鸟笔记
1.概念: 最先进的分布式版本控制系统 文件修改该提交的内容:---版本 文件名 用户 说明 日期 GitHub网站上线了,它为开源项目免费提供Git存储 --CVS及SVN都是集中式的版本控制系统, ...
- nginx https配置+nginx跳转到万网虚拟主机
server { listen 443 ssl; server_name www.104dh.com 104dh.com; ssl on; ssl_certificate cert104/152678 ...
- c# + Sql server 事务处理
事务(Transaction)是并发控制的单位,是用户定义的一个操作序列.这些操作要么都做,要么都不做,是一个不可分割的工作单位. 通过事务,SQL Server能将逻辑相关的一组操作绑定在一起,以便 ...
- 巨蟒python全栈开发-第5天 字典&集合
今日大纲: 1.什么是字典 字典是以key:value的形式来保存数据,用{}表示. 存储的是key:value 2.字典的增删改查(重点) (1) 添加 dic[新key] = 值 setdefau ...