Python 数据分析中金融数据的来源库和简单操作
金融数据
数据分析离不开数据的获取,这里介绍几种常用的获取金融方面数据的方法。
pandas-datareader
pandas-datareader 库包含了全球最著名的几家公司所整理的金融数据,这些数据库包括:
安装
pip install -U pandas-datareader
使用
引入库:import pandas_datareader.data as web
获取数据:
web.DataReader(name=,data_source=,start=,end=)
通过指定的数据源获取金融数据并返回 DataFrame 类型的数据。
- name:数据集名称,通常是股票代码
- data_source:数据源,yahoo,google,fred,ff 等
- start,end 起始(默认为 2010/01/01)、结束日期(默认为当天)
start_dt = datetime.datetime(2010, 1, 1)
end_dt = datetime.date.today()
google_data = web.DataReader(name='GOOG', data_source='google', start=start_dt, end=end_dt)
TuShare
- 免费、开源的python财经数据接口包
- 实现对股票等金融数据从数据采集、清洗加工到数据存储的过程
- TuShare 返回的绝大部分的数据格式都是 pandas DataFrame 类型
数据类型
- 股票分类数据
http://tushare.org/classifying.html - 基本面数据
http://tushare.org/fundamental.html - 宏观经济
http://tushare.org/macro.html - 新闻事件数据
http://tushare.org/newsevent.html
使用
- 安装:
pip install -U tushare
- 引入
import tushare as ts
- 历史数据获取
ts.get_k_data()
import tushare as ts
start_dt = datetime.datetime(2010, 1, 1)
end_dt = datetime.date.today()
maotai_data = ts.get_k_data(code='600519', start='2010-01-01', end='2017-07-01')
- 实时数据获取
ts.get_today_all()
金融学图表
matplotlib 库自带的画图工具 matplotib.finance
可满足我们的基本使用。
API链接:https://matplotlib.org/api/finance_api.html
常用的方法有:
- candlestick2__ochl,candlestick2_ohlc
- candlestick_ochl,candlestick_ohlc
- plot_day_summary2_ochl,plot_day_summary2_ohlc
- plot_day_summary_oclh,plot_day_summary_ohlc
案例
引入相应库:
import tushare as ts
import matplotlib.pyplot as plt
import matplotlib
from matplotlib.dates import date2num, DateFormatter
import matplotlib.finance as mpf
import pandas as pd
%matplotlib inline
获取数据:
stock_data = ts.get_k_data(code='600519', start='2017-01-01', end='2017-07-01')
candlestick2_ochl
fig, ax = plt.subplots(figsize=(12, 5))
mpf.candlestick2_ochl(ax, stock_data['open'], stock_data['close'], stock_data['high'], stock_data['low'],
width=0.6, colorup='r', colordown='g')
ax.set_xticklabels(stock_data['date'])
plt.grid(True)
plt.xticks(rotation=45)
plt.ylabel('Stock Price')
plt.xlabel('Date')
plt.show()
candlestick_ochl
ochl_data = stock_data[['date', 'open', 'close', 'high', 'low']]
ochl_data['date'] = pd.to_datetime(ochl_data['date'])
ochl_data['date'] = ochl_data['date'].apply(date2num)
fig, ax = plt.subplots(figsize=(12, 5))
# 蜡烛图
mpf.candlestick_ochl(ax, ochl_data.values, width=.6, colorup='r', colordown='g')
ax.xaxis_date()
ax.autoscale_view()
ax.xaxis.set_major_formatter(DateFormatter('%Y-%m-%d'))
plt.grid(True)
plt.xticks(rotation=45)
plt.ylabel('Stock Price')
plt.xlabel('Date')
plt.show()
plot_day_summary2_ochl
fig, ax = plt.subplots(figsize=(12, 5))
mpf.plot_day_summary_ochl(ax, stock_data['open'], stock_data['close'], stock_data['high'], stock_data['low'],
colorup='r', colordown='g')
ax.set_xticklabels(stock_data['date'])
plt.grid(True)
plt.xticks(rotation=45)
plt.ylabel('Stock Price')
plt.xlabel('Date')
plt.show()
plot_day_summary_oclh
oclh_data = stock_data[['date', 'open', 'close', 'low', 'high']]
oclh_data['date'] = pd.to_datetime(oclh_data['date'])
oclh_data['date'] = oclh_data['date'].apply(date2num)
fig, ax = plt.subplots(figsize=(12, 5))
mpf.plot_day_summary_oclh(ax, oclh_data.values, colorup='r', colordown='g')
ax.xaxis_date()
ax.autoscale_view()
ax.xaxis.set_major_formatter(DateFormatter('%Y-%m-%d'))
plt.grid(True)
plt.xticks(rotation=45)
plt.ylabel('Stock Price')
plt.xlabel('Date')
plt.show()
Python 数据分析中金融数据的来源库和简单操作的更多相关文章
- python数据分析中常用的库
Python是数据处理常用工具,可以处理数量级从几K至几T不等的数据,具有较高的开发效率和可维护性,还具有较强的通用性和跨平台性,这里就为大家分享几个不错的数据分析工具,需要的朋友可以参考下 Pyth ...
- Python 数据分析中常用的可视化工具
Python 数据分析中常用的可视化工具 1 Matplotlib 用于创建出版质量图表的绘图工具库,目的是为 Python 构建一个 Matlab 式的绘图接口. 1.1 安装 Anaconada ...
- python数据分析之pandas数据选取:df[] df.loc[] df.iloc[] df.ix[] df.at[] df.iat[]
1 引言 Pandas是作为Python数据分析著名的工具包,提供了多种数据选取的方法,方便实用.本文主要介绍Pandas的几种数据选取的方法. Pandas中,数据主要保存为Dataframe和Se ...
- Oracle11g中数据的倒库和入库操作以及高版本数据导入低版本数据可能引发的问题
文章版权由作者李晓晖和博客园共有,若转载请于明显处标明出处:http://www.cnblogs.com/naaoveGIS/. 1.前言 在10g之前,传统的导出和导入分别使用EXP工具和IMP工具 ...
- 《Python数据分析》笔记——数据可视化
数据可视化 matplotlib绘图入门 为了使用matplotlib来绘制基本图像,需要调用matplotlib.pyplot子库中的plot()函数 import matplotlib.pyplo ...
- 《Python 数据分析》笔记——数据的检索、加工与存储
数据的检索.加工与存储 1.利用Numpy和pandas对CSV文件进行写操作 对CSV文件进行写操作,numpy的savetxt()函数是与loadtxt()相对应的一个函数,他能以诸如CSV之类的 ...
- h264 封装 RTMP中FLV数据的解析 rtmp协议简单解析以及用其发送h264的flv文件
一个完整的多媒体文件是由音频和视频2部分组成的.H264.Xvid等就是视频编码格式,MP3.AAC等就是音频编码格式.字幕文件只是其中附带部分. 把视频编码和音频编码打包成一个完整的多媒体文件,可以 ...
- python selenium中等待元素出现及等待元素消失操作
在自动化测试中,很多时候都会有等待页面某个元素出现后能进行下一步操作,或者列表中显示加载,直到加载完成后才进行下一步操作,但时间都不确定,如下图所示 幸运的是,在selenium 2后有一个模块exp ...
- python 抓取金融数据,pandas进行数据分析并可视化系列 (一)
终于盼来了不是前言部分的前言,相当于杂谈,算得上闲扯,我觉得很多东西都是在闲扯中感悟的,比如需求这东西,一个人只有跟自己沟通好了,总结出某些东西了,才能更好的和别人去聊,去说. 今天这篇写的是明白需求 ...
随机推荐
- Pytorch详解NLLLoss和CrossEntropyLoss
是什么? https://www.cnblogs.com/marsggbo/p/10401215.html 具体pytorch怎么运算的 https://blog.csdn.net/qq_222102 ...
- 6359. 【NOIP2019模拟2019.9.15】小ω的树(tree)(定期重构)
题目描述 题解 qy的毒瘤题 CSP搞这种码农题当场手撕出题人 先按照边权从大到小建重构树,然后40%暴力修改+查找即可 100%可以定期重构+平衡规划,每次把B个询问拉出来建虚树,在虚树上暴力维护每 ...
- 3D世界变换
一直弄不清3D场景中scaleOrientation的作用,还有scale.orientation(roation).translation的顺序问题,以往都是试图查一下,关于前者网上几乎找不到什么清 ...
- Wannafly挑战赛16 #E 弹球弹弹弹 splay+基环树+各种思维
链接:https://ac.nowcoder.com/acm/problem/16033来源:牛客网 有n个位置,标号为1到n的整数,m次操作,第i次操作放置一个弹球在b[i] xor c[i-1]处 ...
- [HG]AK 题解
前言 什么鬼畜玩意,扶我起来,我要用__int128,这辈子都不珂能用龟速乘的... 真香. 题解 我们知道这个模数是个神奇的东西 \(2305843008676823040 = 2^{29} \ti ...
- R 文件读写
Write.table()函数的用法read.table()非常相似,只不过它把数据框写入文件而不是从文件中读取.参数和选项: write.table(x, file = "", ...
- ionic slide组件使用
ionic学习使用笔记 slide 组件的使用 开始做的时候,遇到了个要用ionic实现 有一系列的序列需要展示,但是当前页面上只能展示一小部分,剩余的在没有出现时是隐藏的,还得能滑动出现,但是又 ...
- loj#6157 A ^ B Problem
分析 用并查集维护 每次一个连通块的每个点记录它到当前连通块的根的异或值 对于不符合的情况容易判断 最后判断是否都在一个连通块内然后记录答案即可 代码 #include<bits/stdc++. ...
- loc() iloc() at() iat()函数
1 四个函数都是用于dataframe的定位 []用于直接定位. loc()函数是用真实索引,iloc()函数是用索引序号. loc()函数切片是左闭右闭,iloc()函数切片是左闭右开. at(), ...
- Caffe深度学习计算框架
Caffe | Deep Learning Framework是一个清晰而高效的深度学习框架,其作者是博士毕业于UC Berkeley的 Yangqing Jia,目前在Google工作.Caffe是 ...