在tensorboard上显示运行图:

import tensorflow as tf
a = tf.constant(10,name="a")
b = tf.constant(90,name="b")
y = tf.Variable(a+b*2,name='y')
init=tf.global_variables_initializer()
with tf.Session() as sess:
merged = tf.summary.merge_all()
writer = tf.summary.FileWriter('C:/Users/1/Desktop/1',sess.graph) #自定义tensor到给定路径中,奇葩的tensorboard路径只能设置在文件夹下,不能直接设置在桌面,否则报错
sess.run(init)
print(sess.run(y))

通过在终端输入如下:

cd 路径

tensorboard --logdir=路径

浏览器输入:http://localhost:6006/     得到tensorboard展示

另一个例子:

import tensorflow as tf
import numpy as np
import matplotlib.pyplot as plt #python的结果可视化模块
def add_layer(inputs, in_size, out_size, n_layer, activation_function=None):
layer_name = 'layer%s' % n_layer
with tf.name_scope(layer_name):
with tf.name_scope("wights"):
Weights = tf.Variable(tf.random_normal([in_size, out_size]), name='W') #定义权重矩阵
#tf.summary.histogram用于保存变量的变化
tf.summary.histogram(layer_name+'/weights', Weights)
with tf.name_scope("biases"):
biases = tf.Variable(tf.zeros([1, out_size]) + 0.1, name='b')#定义偏置
tf.summary.histogram(layer_name + '/biases', biases)
with tf.name_scope("Wx_plus_b"):
Wx_plus_b = tf.matmul(inputs, Weights) + biases #预测出的值
if activation_function is None:
outputs = Wx_plus_b #线性激活
else:
outputs = activation_function(Wx_plus_b) #非线性激活
tf.summary.histogram(layer_name + '/outputs', outputs)
return outputs
#定义输入,linspace产生等差数列,加上数据的维度,定义输入数据为300个例子
x_data = np.linspace(-1, 1, 300)[:, np.newaxis]
# print(x_data.shape)
noise = np.random.normal(0, 0.05, x_data.shape) #定义噪声点
y_data = np.square(x_data) - 0.5 + noise # y=x_data*x_data - 0.5 #定义命名空间,使用tensorboard进行可视化
with tf.name_scope("inputs"):
xs = tf.placeholder(tf.float32, [None, 1], name="x_input") #模型的输入x值
ys = tf.placeholder(tf.float32, [None, 1], name="y_input") #模型的输入y值
#隐藏层
l1 = add_layer(xs, 1, 10, n_layer=1, activation_function=tf.nn.relu)
#输出层
prediction = add_layer(l1, 10, 1, n_layer=2, activation_function=None) #损失函数
with tf.name_scope("loss"):
loss = tf.reduce_mean(tf.reduce_sum(tf.square(ys-prediction),
reduction_indices=[1]))
tf.summary.scalar('loss', loss) #用于观察常量的变化
#模型训练
with tf.name_scope("train"):
train_step = tf.train.GradientDescentOptimizer(0.1).minimize(loss) init = tf.global_variables_initializer() #初始化所有变量
with tf.Session() as sess:
merged = tf.summary.merge_all()
writer = tf.summary.FileWriter("C:/Users/1/Desktop/1", sess.graph) #保存神经网络的所有的信息,方便浏览器访问
sess.run(init) for i in range(1001):
sess.run(train_step, feed_dict={xs: x_data, ys: y_data})
if i % 50 == 0:#每训练50次,合并一下结果
result = sess.run(merged, feed_dict={xs: x_data, ys: y_data})
writer.add_summary(result, i)

展示tensorboard(损失函数随epoch增加的变化情况):

tensorboard可视化(先写一点点)的更多相关文章

  1. Tensorflow学习笔记3:TensorBoard可视化学习

    TensorBoard简介 Tensorflow发布包中提供了TensorBoard,用于展示Tensorflow任务在计算过程中的Graph.定量指标图以及附加数据.大致的效果如下所示, Tenso ...

  2. 利用tensorboard可视化checkpoint模型文件参数分布

    写在前面: 上周微调一个文本检测模型seglink,将特征提取层进行冻结,只训练分类回归层,然而查看tensorboard发现里面有histogram显示模型各个参数分布,看了目前这个训练模型参数分布 ...

  3. 学习TensorFlow,TensorBoard可视化网络结构和参数

    在学习深度网络框架的过程中,我们发现一个问题,就是如何输出各层网络参数,用于更好地理解,调试和优化网络?针对这个问题,TensorFlow开发了一个特别有用的可视化工具包:TensorBoard,既可 ...

  4. tensorboard可视化节点却没有显示图像的解决方法---注意路径问题加中文文件名

    问题:完成graph中的算子,并执行tf.Session后,用tensorboard可视化节点时,没有显示图像 1. tensorboard 1.10 我是将log文件存储在E盘下面的,所以直接在E盘 ...

  5. 在Keras中使用tensorboard可视化acc等曲线

    1.使用tensorboard可视化ACC,loss等曲线 keras.callbacks.TensorBoard(log_dir='./Graph', histogram_freq= 0 , wri ...

  6. 超简单tensorflow入门优化程序&&tensorboard可视化

    程序1 任务描述: x = 3.0, y = 100.0, 运算公式 x×W+b = y,求 W和b的最优解. 使用tensorflow编程实现: #-*- coding: utf-8 -*-) im ...

  7. 使用TensorBoard可视化工具

    title: 使用TensorBoard可视化工具 date: 2018-04-01 13:04:00 categories: deep learning tags: TensorFlow Tenso ...

  8. 【猫狗数据集】利用tensorboard可视化训练和测试过程

    数据集下载地址: 链接:https://pan.baidu.com/s/1l1AnBgkAAEhh0vI5_loWKw提取码:2xq4 创建数据集:https://www.cnblogs.com/xi ...

  9. 使用 TensorBoard 可视化模型、数据和训练

    使用 TensorBoard 可视化模型.数据和训练 在 60 Minutes Blitz 中,我们展示了如何加载数据,并把数据送到我们继承 nn.Module 类的模型,在训练数据上训练模型,并在测 ...

随机推荐

  1. Linux 下wdcp支持两种安装方式

    wdcp支持两种安装方式1 源码编译 此安装比较麻烦和耗时,一般是20分钟至一个小时不等,具体视机器配置情况而定2 RPM包安装 简单快速,下载快的话,几分钟就可以完成源码安装(ssh登录服务器,执行 ...

  2. LeetCode 46——全排列

    1. 题目 2. 解答 给定一个序列,序列中的任意一个数字都可以作为全排列的最后一位.然后,其余位置元素的确定便是剩余元素的一个全排列,也就是一个子问题. 例子中 [1, 2, 3] 的全排列,最后一 ...

  3. JS-Array.prototype 中的方法的坑

    fill() 今天刷 HackerRank 的题遇到需要创建链表数组(一维数组的每一项是个链表)的题. 众所周知 JS 中的数组可以当链表用,我就用如下代码进行创建 let seqs = (new A ...

  4. 20170809--JS操作Select备忘

    // 1.判断select选项中 是否存在Value="paraValue"的Item function jsSelectIsExitItem(objSelect, objItem ...

  5. RocketMQ 创建和删除 topic,以及 broker 和 nameserver 之间的心跳

    命令行主类:org.apache.rocketmq.tools.command.MQAdminStartup 客户端创建 topic 程序参数:updateTopic -n localhost:987 ...

  6. 【ABAP系列】SAP ABAP ALV里日期类型的F4帮助

    公众号:SAP Technical 本文作者:matinal 原文出处:http://www.cnblogs.com/SAPmatinal/ 原文链接:[ABAP系列]SAP ABAP ALV里日期类 ...

  7. 剑指offer--day02

    1.1题目:用两个栈实现队列:用两个栈来实现一个队列,完成队列的Push和Pop操作. 队列中的元素为int类型. 1.2解题思路: 创建两个栈stack1和stack2,使用两个“先进后出”的栈实现 ...

  8. 腾讯视频的手机端的地址和PC端的地址是不一样的

    腾讯视频的手机端的地址和PC端的地址是不一样的,所以使用iframe的时候记得要使用手机端的地址

  9. log4net 配置文件配置方法

    转自:http://www.dozer.cc/2013/06/log4net-config-file-order/ 最近把项目中所有的日志都改成了 log4net ,同事也蠢蠢欲动,用起了 log4n ...

  10. SQLServer中的Merge使用

    Merge DML 作用: 数据同步 数据转换 基于源表对目标表做Insert,Update,Delete操作 Merge关键字的一些限制 使用Merge关键字只能更新一个表 源表中不能有重复的记录 ...