Network of Schools

Time Limit: 1000MS   Memory Limit: 10000K
Total Submissions: 27121   Accepted: 10704

Description

A number of schools are connected to a computer network. Agreements have been developed among those schools: each school maintains a list of schools to which it distributes software (the “receiving schools”). Note that if B is in the distribution list of school A, then A does not necessarily appear in the list of school B 
You are to write a program that computes the minimal number of schools that must receive a copy of the new software in order for the software to reach all schools in the network according to the agreement (Subtask A). As a further task, we want to ensure that by sending the copy of new software to an arbitrary school, this software will reach all schools in the network. To achieve this goal we may have to extend the lists of receivers by new members. Compute the minimal number of extensions that have to be made so that whatever school we send the new software to, it will reach all other schools (Subtask B). One extension means introducing one new member into the list of receivers of one school. 

Input

The first line contains an integer N: the number of schools in the network (2 <= N <= 100). The schools are identified by the first N positive integers. Each of the next N lines describes a list of receivers. The line i+1 contains the identifiers of the receivers of school i. Each list ends with a 0. An empty list contains a 0 alone in the line.

Output

Your program should write two lines to the standard output. The first line should contain one positive integer: the solution of subtask A. The second line should contain the solution of subtask B.

Sample Input

5
2 4 3 0
4 5 0
0
0
1 0

Sample Output

1
2

Source

 /*************************************************************************
> File Name: poj-1236.network_of_schools.cpp
> Author: CruelKing
> Mail: 2016586625@qq.com
> Created Time: 2019年09月04日 星期三 19时53分40秒
本题大意:给定一个有向图,第一问是让你找出一些点,使得从这些点出发,可以到达图中的所有结点,输出结点数,第二问是问你在图中添加多少条边可以使得从任一点出发都可以访问到图中的其他所有结点.
本题思路:很典型的连通图问题,考虑第一问,求出图中所有的强连通分量,缩点之后建立新图,图中入度为0的点即是这些点,考虑第二问,由于求得的强连通分量都是可以相互到达的,因此我们只需要解决生成的新图的连通性问题,
也就是添加最少的边使得新图形成一个强连通分量,那最优的思路就是选一个入度为零的点让其他所有出度为零的点都指向他,或者选一个出度为零的点,让他指向每个入度为零的点,所以答案就是出度为零和入度为零间的最大值,需要特判的
是,如果原图就是一个强连通分量,那么就不需要加边,所求的的新图应该是一个点,所以这个答案需要特判,切记以上判断结点的出度入度都是求原图的出度和入度.
************************************************************************/ #include <cstdio>
#include <cstring>
using namespace std; const int maxn = + , maxm = * / + ;
int n;
struct Edge {
int from, to, next;
} edge[maxm], edge1[maxm];
int head[maxn], tot;
int low[maxn], dfn[maxn], stack[maxn], belong[maxn];
int Index, top;
int scc;
bool instack[maxn];
bool indegree[maxn];
bool outdegree[maxn]; int max(int a, int b) {
return a > b ? a : b;
} void init() {
tot = ;
memset(head, -,sizeof head);
} void addedge(int u, int v) {
edge[tot] = (Edge){u, v, head[u]}; head[u] = tot ++;
} void tarjan(int u) {
int v;
low[u] = dfn[u] = ++ Index;
stack[top ++] = u;
instack[u] = true;
for(int i = head[u]; ~i; i = edge[i].next) {
v = edge[i].to;
if(!dfn[v]) {
tarjan(v);
if(low[u] > low[v]) low[u] = low[v];
} else if(instack[v] && low[u] > dfn[v]) low[u] = dfn[v];
}
if(low[u] == dfn[u]) {
scc ++;
do {
v = stack[-- top];
instack[v] = false;
belong[v] = scc;
} while(v != u);
}
} void solve() {
memset(dfn, , sizeof dfn);
memset(instack, false, sizeof instack);
Index = scc = top = ;
for(int i = ; i <= n; i ++)
if(!dfn[i]) {
tarjan(i);
}
} bool vis[maxn]; int main() {
memset(indegree, false, sizeof indegree);
memset(outdegree, false, sizeof outdegree);
init();
scanf("%d", &n);
int x;
for(int i = ; i <= n; i ++) {
while(scanf("%d", &x) && x)
addedge(i, x);
}
solve();
for(int i = ; i <= n; i ++)
for(int k = head[i]; ~k; k = edge[k].next)
if(belong[i] != belong[edge[k].to]) {
indegree[belong[edge[k].to]] = true;
outdegree[belong[edge[k].from]] = true;
}
int in0 = , out0 = ;
for(int i = ; i <= scc; i ++) {
if(!indegree[i]) in0 ++;
if(!outdegree[i]) out0 ++;
}
out0 = max(in0, out0);
if(scc == ) out0 = ;
printf("%d\n%d\n", in0, out0);
return ;
}

poj-1236.network of schools(强连通分量 + 图的入度出度)的更多相关文章

  1. POJ 1236 Network Of Schools (强连通分量缩点求出度为0的和入度为0的分量个数)

    Network of Schools A number of schools are connected to a computer network. Agreements have been dev ...

  2. POJ 1236 Network of Schools (强连通分量缩点求度数)

    题意: 求一个有向图中: (1)要选几个点才能把的点走遍 (2)要添加多少条边使得整个图强联通 分析: 对于问题1, 我们只要求出缩点后的图有多少个入度为0的scc就好, 因为有入度的scc可以从其他 ...

  3. POJ1236 Network of Schools —— 强连通分量 + 缩点 + 入出度

    题目链接:http://poj.org/problem?id=1236 Network of Schools Time Limit: 1000MS   Memory Limit: 10000K Tot ...

  4. poj~1236 Network of Schools 强连通入门题

    一些学校连接到计算机网络.这些学校之间已经达成了协议: 每所学校都有一份分发软件的学校名单("接收学校"). 请注意,如果B在学校A的分发名单中,则A不一定出现在学校B的名单中您需 ...

  5. POJ 1236 Network of Schools(强连通分量)

    POJ 1236 Network of Schools 题目链接 题意:题意本质上就是,给定一个有向图,问两个问题 1.从哪几个顶点出发,能走全全部点 2.最少连几条边,使得图强连通 思路: #inc ...

  6. POJ 1236 Network of Schools(强连通 Tarjan+缩点)

    POJ 1236 Network of Schools(强连通 Tarjan+缩点) ACM 题目地址:POJ 1236 题意:  给定一张有向图,问最少选择几个点能遍历全图,以及最少加入�几条边使得 ...

  7. Poj 1236 Network of Schools (Tarjan)

    题目链接: Poj 1236 Network of Schools 题目描述: 有n个学校,学校之间有一些单向的用来发射无线电的线路,当一个学校得到网络可以通过线路向其他学校传输网络,1:至少分配几个 ...

  8. poj 1236 Network of Schools(又是强连通分量+缩点)

    http://poj.org/problem?id=1236 Network of Schools Time Limit: 1000MS   Memory Limit: 10000K Total Su ...

  9. [tarjan] poj 1236 Network of Schools

    主题链接: http://poj.org/problem?id=1236 Network of Schools Time Limit: 1000MS   Memory Limit: 10000K To ...

随机推荐

  1. centos6.5下修改系统的roo用户/非root用户的密码

    1.修改系统root用户的密码 [........~]# passwd然后输入新密码,若提示密码太简单,无需理会,直接敲回车: 然后再次输入新密码,即可修改成功. 2.修改系统非root用户的密码:e ...

  2. 9 斐波那契数列Fibonacci

    题目1:写一个函数,输入n,求Fibonacci数列的第n项.该数列定义如下: n=0时,f(n)=0; n=1时,f(n)=1; n>1时,f(n)=f(n-1)+f(n-2) 1. 效率差的 ...

  3. vue-cli3.0的配置

    转自 https://www.cnblogs.com/sangzs/p/9543242.html module.exports = { // 基本路径 baseUrl: '/', // 输出文件目录 ...

  4. Python基础(四)

    一.迭代器       让不同数据类型具有相同的遍历方式:list.dict.str.tuple.set 1.特点: ①省内存 ②只能向前,不能反复 ③惰性机制 2.可迭代对象 ###dir() 查看 ...

  5. Jenkins-ssh远程执行nohup- java无法退出

    一,初步 #执行方式 ssh 192.168.2.103 " nohup java -jar /home/a/ipf/ight/feedback/ixxxedback-platform-1. ...

  6. SpringBoot2.2版本配置绑定

    具体可以查看这篇:https://www.cnblogs.com/dalianpai/p/11772382.html  原始的 /** * @author WGR * @create 2019/12/ ...

  7. mini-batch

    我们在训练神经网络模型时,最常用的就是梯度下降,梯度下降有一下几种方式: 1.Batch gradient descent(BGD批梯度下降) 遍历全部数据集算一次损失函数,然后算函数对各个参数的梯度 ...

  8. ArrayList类源码浅析(二)

    1.removeAll(Collection<?> c)和retainAll(Collection<?> c)方法 第一个是从list中删除指定的匹配的集合元素,第二个方法是用 ...

  9. springboot+mybatis+SpringSecurity 实现用户角色数据库管理(一)

    本文使用springboot+mybatis+SpringSecurity 实现用户权限数据库管理 实现用户和角色用数据库存储,而资源(url)和权限的对应采用硬编码配置. 也就是角色可以访问的权限通 ...

  10. pyhton2与pyhton3切换

    ubuntu中默认的Python版本是Python2.X,但是现在Python的最新版本是Python3.X. 那么怎么修改ubutun系统默认的Python解释器呢? 如果没有安装,则使用以下命令安 ...