POJ 3468 A Simple Problem with Integers (分块)
Description
You have \(N\) integers, \(A_1, A_2, ... , A_N\). You need to deal with two kinds of operations. One type of operation is to add some given number to each number in a given interval. The other is to ask for the sum of numbers in a given interval.
Input
The first line contains two numbers \(N\) and \(Q\). \(1 ≤ N,Q ≤ 100000\).
The second line contains \(N\) numbers, the initial values of \(A_1, A_2, ... , A_N\). \(-1000000000 \le A_i \le 1000000000\).
Each of the next \(Q\) lines represents an operation.
"\(C\ a\ b\ c\)" means adding c to each of \(A_a, A_{a+1}, \ ...\ , A_b\). \(-10000 \le c \le 10000\).
"\(Q\ a\ b\)" means querying the sum of \(A_a, A_{a+1}, \ ...\ , A_b\).
Output
You need to answer all \(Q\) commands in order. One answer in a line.
Sample Input
10 5
1 2 3 4 5 6 7 8 9 10
Q 4 4
Q 1 10
Q 2 4
C 3 6 3
Q 2 4
Sample Output
4
55
9
15
Hint
The sums may exceed the range of 32-bit integers.
Solution
题意
给定 \(n\) 个数和 \(q\) 个询问,询问包含两种:\(C\ a\ b\ c\) 代表区间 \([a, b]\) 的每个数加上 \(c\),\(Q\ a\ b\) 输出区间 \([a, b]\) 的和。
题解
分块
区间更新模板题,本题可以使用树状数组、线段树和分块解决,这里使用的是分块。
#include <cstdio>
#include <iostream>
#include <cmath>
using namespace std;
typedef long long ll;
const int maxn = 1e5 + 10;
ll a[maxn], sum[maxn], add[maxn]; // add[] 是增量标记
int L[maxn], R[maxn]; // 存放每个块的左右边界
int block[maxn]; // 存放下标为 i 的元素的块号
int n, q;
int block_size; // 块的大小
// 分块 + 预处理
void init() {
block_size = sqrt(n);
for(int i = 1; i <= block_size; ++i) {
L[i] = (i - 1) * block_size + 1;
R[i] = i * block_size;
}
// 处理最后一块
if(R[block_size] < n) {
++block_size;
L[block_size] = R[block_size - 1] + 1;
R[block_size] = n;
}
// 预处理每个块的区间和
for(int i = 1; i <= block_size; ++i) {
for(int j = L[i]; j <= R[i]; ++j) {
block[j] = i;
sum[i] += a[j];
}
}
}
// 将区间 [l, r] 内的所有元素加 c
void change(int l, int r, ll c) {
int p = block[l], q = block[r]; // 取出左右区间所在的块号
if(p == q) {
// 在同一块直接块内暴力
for(int i = l; i <= r; ++i) {
a[i] += c;
}
sum[p] += c * (r - l + 1);
} else {
// 不在同一块,块内暴力,块间整块处理
for(int i = p + 1; i <= q - 1; ++i) {
add[i] += c;
}
// 块内暴力
for(int i = l; i <= R[p]; ++i) {
a[i] += c;
}
sum[p] += c * (R[p] - l + 1);
for(int i = L[q]; i <= r; ++i) {
a[i] += c;
}
sum[q] += c * (r - L[q] + 1);
}
}
ll query(int l, int r) {
int p = block[l], q = block[r]; // 取出左右区间所在的块号
ll ans = 0;
if(p == q) {
for(int i = l; i <= r; ++i) {
ans += a[i];
}
ans += add[p] * (r - l + 1);
} else {
// 块间暴力
for(int i = p + 1; i <= q - 1; ++i) {
ans += sum[i] + add[i] * (R[i] - L[i] + 1); // 注意不是乘以 block_size
}
// 块内暴力
for(int i = l; i <= R[p]; ++i) {
ans += a[i];
}
ans += add[p] * (R[p] - l + 1);
for(int i = L[q]; i <= r; ++i) {
ans += a[i];
}
ans += add[q] * (r - L[q] + 1);
}
return ans;
}
int main() {
scanf("%d%d", &n, &q);
for(int i = 1; i <= n; ++i) {
scanf("%lld", &a[i]);
}
init();
for(int i = 0; i < q; ++i) {
char op;
getchar(); scanf("%c", &op);
int l, r;
scanf("%d%d", &l, &r);
if(op == 'C') {
ll c;
scanf("%lld", &c);
change(l, r, c);
} else {
printf("%lld\n", query(l, r));
}
}
return 0;
}
Reference
《算法竞赛进阶指南》 李煜东 著
POJ 3468 A Simple Problem with Integers (分块)的更多相关文章
- POJ 3468 A Simple Problem with Integers(分块入门)
题目链接:http://poj.org/problem?id=3468 A Simple Problem with Integers Time Limit: 5000MS Memory Limit ...
- POJ.3468 A Simple Problem with Integers(线段树 区间更新 区间查询)
POJ.3468 A Simple Problem with Integers(线段树 区间更新 区间查询) 题意分析 注意一下懒惰标记,数据部分和更新时的数字都要是long long ,别的没什么大 ...
- poj 3468 A Simple Problem with Integers 【线段树-成段更新】
题目:id=3468" target="_blank">poj 3468 A Simple Problem with Integers 题意:给出n个数.两种操作 ...
- 线段树(成段更新) POJ 3468 A Simple Problem with Integers
题目传送门 /* 线段树-成段更新:裸题,成段增减,区间求和 注意:开long long:) */ #include <cstdio> #include <iostream> ...
- POJ 3468 A Simple Problem with Integers(线段树功能:区间加减区间求和)
题目链接:http://poj.org/problem?id=3468 A Simple Problem with Integers Time Limit: 5000MS Memory Limit ...
- poj 3468 A Simple Problem with Integers(线段树+区间更新+区间求和)
题目链接:id=3468http://">http://poj.org/problem? id=3468 A Simple Problem with Integers Time Lim ...
- poj 3468 A Simple Problem with Integers 线段树区间加,区间查询和
A Simple Problem with Integers Time Limit: 1 Sec Memory Limit: 256 MB 题目连接 http://poj.org/problem?i ...
- poj 3468 A Simple Problem with Integers 线段树区间加,区间查询和(模板)
A Simple Problem with Integers Time Limit: 1 Sec Memory Limit: 256 MB 题目连接 http://poj.org/problem?i ...
- poj 3468:A Simple Problem with Integers(线段树,区间修改求和)
A Simple Problem with Integers Time Limit: 5000MS Memory Limit: 131072K Total Submissions: 58269 ...
随机推荐
- java遇到的问题
1.java 初始化泛型数组 public static <T> T[] toArray(java.util.List<T> src, Class<T> type) ...
- nodeType介绍及应用示例
一,DOM中的节点类型介绍 DOM将一份文档抽象为一棵树,而树又由众多不同类型的节点构成. 元素节点是DOM中的最小单位节点,它包括了各种标签,比如表示段落的p,表示无序列表的ul等. 文本节点总是被 ...
- 跨域篇--JSONP原理
一篇文章让你明白 jsonp原理详解 什么是JSONP? 先说说JSONP是怎么产生的: 其实网上关于JSONP的讲解有很多,但却千篇一律,而且云里雾里,对于很多刚接触的人来讲理解起来有些困难,着用自 ...
- Python面试题之下面代码会输出什么
def f(x,l=[]): for i in range(x): l.append(i*i) print l f(2) f(3,[3,2,1]) f(3) 答案: [0, 1] [3, 2, 1, ...
- ARC103
ARC103E Tr/ee 首先没有叶子显然不科学,\(s_n\)是1也不怎么科学,\(s_i != s_{n-i}\)同样不怎么科学 特判掉上述情况后先把root记为1,链接(root,i+1)如果 ...
- java虚拟机规范(se8)——java虚拟机的编译(二)
3.3 算术运算 java虚拟机通常在操作数栈上进行算术运算(例外情况是iinc指令,它直接增加一个局部变量的值).例如下面的align2grain()方法,它的作用是将int值对齐到2的指定次幂: ...
- 复习下KMP&e-KMP
KMP算法的核心思想是next数组. 接下来,我来谈谈我对KMP数组的理解. KMP算法是用来匹配有多少相同字串的一种算法. 1.next数组记录前缀与后缀相等的位置,然后跳到这. 2.数组即记录后缀 ...
- Python之OS(系统操作)模块常用函数
mkdir(path[, mode=0777]) makedirs(name,mode=511) rmdir(path) removedirs(path) listdir(path) getcwd() ...
- css 深入理解
场景一.边框半透明,背景绿色 默认情况下背景会延伸到边框所在的下边 css2 中我们只能接受 css3 中我们可以通过 background-clip 属性来实现 border: 10px soli ...
- MySQL中的触发器insert、update
以下为MySQL 触发器insert 的3个示例演示(update类似) delimiter // create trigger InsertUser before insert on user fo ...