最邻近规则分类(K-Nearest Neighbor)KNN算法

1.综述

1.1 Cover和Hart在1968年提出了最初的邻近算法

1.2 分类(classification)算法

1.3 输入基于实例的学习(instance-based learning),懒惰学习(lazy learing)

2. 例子

未知电影属于什么类型?

3.算法详述

3.1 步骤

为了判断未知实例的类别,以所有已知类别的实例作为参照

选择参数K

计算未知实例与所有已知实例的距离

选择最近K个已知实例

根据少数服从多数的投票法则(majority-voting),让未知实例归类为K个最邻近样本中最多数的类别

3.2 细节

关于K

关于距离的衡量方法:

3.2.1 Euclidean Distance定义

其他距离衡量:余弦值(cos),相关度(correlation),曼哈顿距离(Manhattan distance)

# -*- coding:utf-8 -*-

#计算a,g两点之间的EuclideanDistance
import math def ComputerEuclideanDistance(x1,y1,x2,y2):
d = math.sqrt(math.pow((x1 - x2),2) + math.pow((y1 - y2),2))
return d d_ag = ComputerEuclideanDistance(3,104,18,90) print("d_ag:",d_ag)

3.3 举例

4. 算法优缺点

4.1 算法优点

简单

易于理解

容易实现

通过对K的选择可具备丢噪音数据的健壮性

4.2 算法缺点

需要大量的空间存储所有已知实例

算法复杂度高(需要比较所有已知实例与要分类的实例)

当其样本分布不平衡时,比如其中一类样本过大(实例数量过多)占主导的时候,新的未知实例容易被归类为这个主导样本,因为这类样本实例的数量过大,但是这个新的未知实例实际上并不接近目标样本。(上图中的Y点)

5.算法的改进版本

考虑距离,根据距离上加上权重

如:1/d(d为距离)

6.KNN算法的应用

在线文档:https://scikit-learn.org/stable/modules/neighbors.html

6.1 数据集介绍-虹膜

150 个实例

特征:萼片长度(sepal length)、萼片宽度(sepal width)、花瓣长度(petal length)、花瓣宽度(petal width)

类别:Iris setosa、Iris versicolor,Iris virginnica

      6.2 利用Python的机器学习库sklearn: SKLearn Example.py

直接调用库函数实现

# -*- coding:utf-8 -*-

from sklearn import neighbors
from sklearn import datasets '''
这里所有测参数都采用默认
''' #载入分类器
knn = neighbors.KNeighborsClassifier() #载入数据
iris = datasets.load_iris() #查看数据集
print(iris) #传入特征集、类标签来训练模型
knn.fit(iris.data,iris.target) #使用测试数据预测
predictedLabel = knn.predict([[0.1,0.2,0.3,0.4]]) #查看预测结果
print(predictedLabel)

  自定义实现

# -*- coding:utf-8 -*-

import csv
import random
import math
import operator #加载数据集,划分训练集和测试集
def loadDataset(filename,split,trainingSet = [],testSet = []):
with open(filename,'rt') as csvfile:
lines = csv.reader(csvfile)
dataset = list(lines)
for x in range(len(dataset) - 1):
for y in range(4):
dataset[x][y] = float(dataset[x][y])
if random.random() < split:
trainingSet.append(dataset[x])
else:
testSet.append(dataset[x]) #计算euclideanDistance #实例维度:length
def euclideanDistance(instance1, instance2, length):
distance = 0
for x in range(length):
distance += pow(instance1[x] - instance2[x],2)
return math.sqrt(distance) #返回最近的K个邻居
def getNeighbors(trainingset,testInstance,k):
distances = []#存放所有计算出的距离
length = len(testInstance) - 1
for x in range(len(trainingset)):
dist = euclideanDistance(testInstance,trainingset[x], length)
distances.append((trainingset[x],dist))
distances.sort(key = operator.itemgetter(1))#排序
neighbors = []
for x in range(k):#选出前K个存入neighbors
neighbors.append(distances[x][0])
return neighbors #在最近的K个邻居中,根据每个邻居所属于的类别,并统计个数,最后对其排序选出属于哪一类
def getResponse(neighbors):
classVotes = {}
for x in range(len(neighbors)):
Response = neighbors[x][-1]
if Response in classVotes:
classVotes[Response] += 1
else:
classVotes[Response] = 1
sortedVotes = sorted(classVotes.items(),key = operator.itemgetter(1),reverse=True)
return sortedVotes[0][0] #计算预测的精确度
def getAccuracy(testset,predictions):
correct = 0
for x in range(len(testset)):
if testset[x][-1] == predictions[x]:
correct += 1
return (correct/float(len(testset)))*100.0 def main():
#prepare data
trainingSet = []
testSet = []
split = 0.67
loadDataset(r"irisdata.txt",split,trainingSet,testSet)
print("trainingSet:" + repr(len(trainingSet)))
print("testSet:" + repr(len(testSet)))
#generate predictions
predictions = [] k = 3
correct = []
for x in range(len(testSet)):
neighbors = getNeighbors(trainingSet,testSet[x],k)
result = getResponse(neighbors)
predictions.append(result)
print("predcted =" + repr(result)+",actual = " + repr(testSet[x][-1]))
accuracy = getAccuracy(testSet,predictions)
print("accuracy:" + repr(accuracy) + "%") main()

  测试数据集

5.1,3.5,1.4,0.2,Iris-setosa
4.9,3.0,1.4,0.2,Iris-setosa
4.7,3.2,1.3,0.2,Iris-setosa
4.6,3.1,1.5,0.2,Iris-setosa
5.0,3.6,1.4,0.2,Iris-setosa
5.4,3.9,1.7,0.4,Iris-setosa
4.6,3.4,1.4,0.3,Iris-setosa
5.0,3.4,1.5,0.2,Iris-setosa
4.4,2.9,1.4,0.2,Iris-setosa
4.9,3.1,1.5,0.1,Iris-setosa
5.4,3.7,1.5,0.2,Iris-setosa
4.8,3.4,1.6,0.2,Iris-setosa
4.8,3.0,1.4,0.1,Iris-setosa
4.3,3.0,1.1,0.1,Iris-setosa
5.8,4.0,1.2,0.2,Iris-setosa
5.7,4.4,1.5,0.4,Iris-setosa
5.4,3.9,1.3,0.4,Iris-setosa
5.1,3.5,1.4,0.3,Iris-setosa
5.7,3.8,1.7,0.3,Iris-setosa
5.1,3.8,1.5,0.3,Iris-setosa
5.4,3.4,1.7,0.2,Iris-setosa
5.1,3.7,1.5,0.4,Iris-setosa
4.6,3.6,1.0,0.2,Iris-setosa
5.1,3.3,1.7,0.5,Iris-setosa
4.8,3.4,1.9,0.2,Iris-setosa
5.0,3.0,1.6,0.2,Iris-setosa
5.0,3.4,1.6,0.4,Iris-setosa
5.2,3.5,1.5,0.2,Iris-setosa
5.2,3.4,1.4,0.2,Iris-setosa
4.7,3.2,1.6,0.2,Iris-setosa
4.8,3.1,1.6,0.2,Iris-setosa
5.4,3.4,1.5,0.4,Iris-setosa
5.2,4.1,1.5,0.1,Iris-setosa
5.5,4.2,1.4,0.2,Iris-setosa
4.9,3.1,1.5,0.1,Iris-setosa
5.0,3.2,1.2,0.2,Iris-setosa
5.5,3.5,1.3,0.2,Iris-setosa
4.9,3.1,1.5,0.1,Iris-setosa
4.4,3.0,1.3,0.2,Iris-setosa
5.1,3.4,1.5,0.2,Iris-setosa
5.0,3.5,1.3,0.3,Iris-setosa
4.5,2.3,1.3,0.3,Iris-setosa
4.4,3.2,1.3,0.2,Iris-setosa
5.0,3.5,1.6,0.6,Iris-setosa
5.1,3.8,1.9,0.4,Iris-setosa
4.8,3.0,1.4,0.3,Iris-setosa
5.1,3.8,1.6,0.2,Iris-setosa
4.6,3.2,1.4,0.2,Iris-setosa
5.3,3.7,1.5,0.2,Iris-setosa
5.0,3.3,1.4,0.2,Iris-setosa
7.0,3.2,4.7,1.4,Iris-versicolor
6.4,3.2,4.5,1.5,Iris-versicolor
6.9,3.1,4.9,1.5,Iris-versicolor
5.5,2.3,4.0,1.3,Iris-versicolor
6.5,2.8,4.6,1.5,Iris-versicolor
5.7,2.8,4.5,1.3,Iris-versicolor
6.3,3.3,4.7,1.6,Iris-versicolor
4.9,2.4,3.3,1.0,Iris-versicolor
6.6,2.9,4.6,1.3,Iris-versicolor
5.2,2.7,3.9,1.4,Iris-versicolor
5.0,2.0,3.5,1.0,Iris-versicolor
5.9,3.0,4.2,1.5,Iris-versicolor
6.0,2.2,4.0,1.0,Iris-versicolor
6.1,2.9,4.7,1.4,Iris-versicolor
5.6,2.9,3.6,1.3,Iris-versicolor
6.7,3.1,4.4,1.4,Iris-versicolor
5.6,3.0,4.5,1.5,Iris-versicolor
5.8,2.7,4.1,1.0,Iris-versicolor
6.2,2.2,4.5,1.5,Iris-versicolor
5.6,2.5,3.9,1.1,Iris-versicolor
5.9,3.2,4.8,1.8,Iris-versicolor
6.1,2.8,4.0,1.3,Iris-versicolor
6.3,2.5,4.9,1.5,Iris-versicolor
6.1,2.8,4.7,1.2,Iris-versicolor
6.4,2.9,4.3,1.3,Iris-versicolor
6.6,3.0,4.4,1.4,Iris-versicolor
6.8,2.8,4.8,1.4,Iris-versicolor
6.7,3.0,5.0,1.7,Iris-versicolor
6.0,2.9,4.5,1.5,Iris-versicolor
5.7,2.6,3.5,1.0,Iris-versicolor
5.5,2.4,3.8,1.1,Iris-versicolor
5.5,2.4,3.7,1.0,Iris-versicolor
5.8,2.7,3.9,1.2,Iris-versicolor
6.0,2.7,5.1,1.6,Iris-versicolor
5.4,3.0,4.5,1.5,Iris-versicolor
6.0,3.4,4.5,1.6,Iris-versicolor
6.7,3.1,4.7,1.5,Iris-versicolor
6.3,2.3,4.4,1.3,Iris-versicolor
5.6,3.0,4.1,1.3,Iris-versicolor
5.5,2.5,4.0,1.3,Iris-versicolor
5.5,2.6,4.4,1.2,Iris-versicolor
6.1,3.0,4.6,1.4,Iris-versicolor
5.8,2.6,4.0,1.2,Iris-versicolor
5.0,2.3,3.3,1.0,Iris-versicolor
5.6,2.7,4.2,1.3,Iris-versicolor
5.7,3.0,4.2,1.2,Iris-versicolor
5.7,2.9,4.2,1.3,Iris-versicolor
6.2,2.9,4.3,1.3,Iris-versicolor
5.1,2.5,3.0,1.1,Iris-versicolor
5.7,2.8,4.1,1.3,Iris-versicolor
6.3,3.3,6.0,2.5,Iris-virginica
5.8,2.7,5.1,1.9,Iris-virginica
7.1,3.0,5.9,2.1,Iris-virginica
6.3,2.9,5.6,1.8,Iris-virginica
6.5,3.0,5.8,2.2,Iris-virginica
7.6,3.0,6.6,2.1,Iris-virginica
4.9,2.5,4.5,1.7,Iris-virginica
7.3,2.9,6.3,1.8,Iris-virginica
6.7,2.5,5.8,1.8,Iris-virginica
7.2,3.6,6.1,2.5,Iris-virginica
6.5,3.2,5.1,2.0,Iris-virginica
6.4,2.7,5.3,1.9,Iris-virginica
6.8,3.0,5.5,2.1,Iris-virginica
5.7,2.5,5.0,2.0,Iris-virginica
5.8,2.8,5.1,2.4,Iris-virginica
6.4,3.2,5.3,2.3,Iris-virginica
6.5,3.0,5.5,1.8,Iris-virginica
7.7,3.8,6.7,2.2,Iris-virginica
7.7,2.6,6.9,2.3,Iris-virginica
6.0,2.2,5.0,1.5,Iris-virginica
6.9,3.2,5.7,2.3,Iris-virginica
5.6,2.8,4.9,2.0,Iris-virginica
7.7,2.8,6.7,2.0,Iris-virginica
6.3,2.7,4.9,1.8,Iris-virginica
6.7,3.3,5.7,2.1,Iris-virginica
7.2,3.2,6.0,1.8,Iris-virginica
6.2,2.8,4.8,1.8,Iris-virginica
6.1,3.0,4.9,1.8,Iris-virginica
6.4,2.8,5.6,2.1,Iris-virginica
7.2,3.0,5.8,1.6,Iris-virginica
7.4,2.8,6.1,1.9,Iris-virginica
7.9,3.8,6.4,2.0,Iris-virginica
6.4,2.8,5.6,2.2,Iris-virginica
6.3,2.8,5.1,1.5,Iris-virginica
6.1,2.6,5.6,1.4,Iris-virginica
7.7,3.0,6.1,2.3,Iris-virginica
6.3,3.4,5.6,2.4,Iris-virginica
6.4,3.1,5.5,1.8,Iris-virginica
6.0,3.0,4.8,1.8,Iris-virginica
6.9,3.1,5.4,2.1,Iris-virginica
6.7,3.1,5.6,2.4,Iris-virginica
6.9,3.1,5.1,2.3,Iris-virginica
5.8,2.7,5.1,1.9,Iris-virginica
6.8,3.2,5.9,2.3,Iris-virginica
6.7,3.3,5.7,2.5,Iris-virginica
6.7,3.0,5.2,2.3,Iris-virginica
6.3,2.5,5.0,1.9,Iris-virginica
6.5,3.0,5.2,2.0,Iris-virginica
6.2,3.4,5.4,2.3,Iris-virginica
5.9,3.0,5.1,1.8,Iris-virginica

  

机器学习-KNN算法详解与实战的更多相关文章

  1. 机器学习经典算法详解及Python实现--基于SMO的SVM分类器

    原文:http://blog.csdn.net/suipingsp/article/details/41645779 支持向量机基本上是最好的有监督学习算法,因其英文名为support vector  ...

  2. 算法代码[置顶] 机器学习实战之KNN算法详解

    改章节笔者在深圳喝咖啡的时候突然想到的...之前就有想写几篇关于算法代码的文章,所以回家到以后就奋笔疾书的写出来发表了 前一段时间介绍了Kmeans聚类,而KNN这个算法刚好是聚类以后经常使用的匹配技 ...

  3. 机器学习-K近邻(KNN)算法详解

    一.KNN算法描述   KNN(K Near Neighbor):找到k个最近的邻居,即每个样本都可以用它最接近的这k个邻居中所占数量最多的类别来代表.KNN算法属于有监督学习方式的分类算法,所谓K近 ...

  4. knn算法详解

    邻近算法,或者说K最近邻(kNN,k-NearestNeighbor)分类算法是数据挖掘分类技术中最简单的方法之一.所谓K最近邻,就是k个最近的邻居的意思,说的是每个样本都可以用它最接近的k个邻居来代 ...

  5. 机器学习|线性回归算法详解 (Python 语言描述)

    原文地址 ? 传送门 线性回归 线性回归是一种较为简单,但十分重要的机器学习方法.掌握线性的原理及求解方法,是深入了解线性回归的基本要求.除此之外,线性回归也是监督学习回归部分的基石. 线性回归介绍 ...

  6. 图解机器学习 | LightGBM模型详解

    作者:韩信子@ShowMeAI 教程地址:http://www.showmeai.tech/tutorials/34 本文地址:http://www.showmeai.tech/article-det ...

  7. 机器学习03 /jieba详解

    机器学习03 /jieba详解 目录 机器学习03 /jieba详解 1.引言 2.分词 2.1.jieba.cut && jieba.cut_for_search 2.2.jieba ...

  8. BM算法  Boyer-Moore高质量实现代码详解与算法详解

    Boyer-Moore高质量实现代码详解与算法详解 鉴于我见到对算法本身分析非常透彻的文章以及实现的非常精巧的文章,所以就转载了,本文的贡献在于将两者结合起来,方便大家了解代码实现! 算法详解转自:h ...

  9. kmp算法详解

    转自:http://blog.csdn.net/ddupd/article/details/19899263 KMP算法详解 KMP算法简介: KMP算法是一种高效的字符串匹配算法,关于字符串匹配最简 ...

随机推荐

  1. Android视频处理 --处理视频第一帧缩略图

    从API 8开始,新增了一个类: android.media.ThumbnailUtils这个类提供了3个静态方法一个用来获取视频第一帧得到的Bitmap,2个对图片进行缩略处理. ? 1 publi ...

  2. 分享页(把末尾的JS函数换成这个)

    function jsApiStart(obj) { wx.config({ debug: false, // 开启调试模式,调用的所有api的返回值会在客户端alert出来,若要查看传入的参数,可以 ...

  3. ACM ICPC 2011-2012 Northeastern European Regional Contest(NEERC)K Kingdom Roadmap

    K: 给你n个点以及n-1的条边, 问你最少要加多少条边,使得每两个点割去一条联通的边,还可以使的这两个点连通. 有个一个结论,最少添加的边数为(叶子节点数+1)/ 2. 我们可以只考虑叶子节点数应该 ...

  4. 【后台管理系统】—— Ant Design Pro 页面相关(三)

    一.卡片Card分类 与普通卡片使用区别:底部按钮及内容样式 <Card hoverable bodyStyle={{ paddingBottom: 20 }} actions={[ // 卡片 ...

  5. HashMap,ConcurrentHashMap相关知识整理

    1.HashMap的存储步骤: 1.传入key和value,判断key是否为null,如果为null,则调用putForNullKey,以null作为key存储到哈希表中: 2. 然后计算key的ha ...

  6. 【c++进阶:c++ 顺序容器vector,string,deque,list,forward_list,array常用性质】

    常用5种顺序容器性质: https://blog.csdn.net/oil_you/article/details/82821833 关于deque https://www.cnblogs.com/L ...

  7. hdu6599 I Love Palindrome String

    由样例可知,题目中求的回文串数量,其实是本质不同的回文串数量,这个可以直接用回文树来做. 考虑前半段是回文串这个限制,这个东西回文树不好做,可以再套一个马拉车,然后记录一下插入到回文树的节点中最后一个 ...

  8. Unity3D(C#)连接SQL Server2008

    首先部署安装sql server2008,添加Sql Manager. Unity3D连接需要在Unity2017\Editor\Data\Mono\lib\mono\unity文件下找到4个头文件l ...

  9. JMV监控工具之JConsole

    一.简介 JConsole是一个基于JMX的GUI工具,用于连接正在运行的JVM,它是Java自带的简单性能监控工具.下面以对tomcat的监控为例,带领大家熟悉JConsole这个工具. 二.配置 ...

  10. 【Spring】---【IOC入门案例】

    第一步:导入Jar包 第二步:创建类,在类里面创建方法 public class User { public void add(){ System.out.println("-------- ...