Krustal重构树
zz:https://blog.csdn.net/ouqingliang/article/details/81206050
Kruskal重构树基于Kruskal算法。在执行算法过程中,Kruskal算法会把u,v两点所在的连通块连一条边。而这里会
新建一个节点,点权为原来的图中这条边的边权,并把此节点与u,v的祖先分别连边。最终便会得到一棵Kruskal重
构树。
很明显有如下结论:
1,这是一棵二叉树;
2,叶子节点代表原图的点,非叶子节点表示原图的一条边;
3,对于所有非叶子节点,其点权<父亲节点的点权。举个栗子:
原图:
重构树
例题:BZOJ3732(Network)
题意:给定一个图,对于每个询问求u到v的所有路径中,边的最大值最小多少?
分析:Kruskal重构树模板题。每个询问实际上就是询问在最小生成树中的u,v之间的路径的最大值。
对结论3扩展一下,可以知道:lca(u,v)的点权即为所求。
时间复杂度O(N*logN)
#include <cstdio>
#include <algorithm>
#include <iostream>
#include <cstring>
#include <cmath>
#include <vector>
using namespace std;
#define N 15010
int n,m,k,num,logn;
struct Edge{
int x,y,val;
};
bool operator < (const Edge a,const Edge b)
{
return a.val<b.val;
}
Edge e[N<<1];
int fa[N<<1];
int find(int x)
{
return (fa[x]==x)?x:fa[x]=find(fa[x]);
} vector<int> tr[N<<1];
void AddEdge(int x,int y)
{
tr[y].push_back(x);
} int dep[N<<1];
int f[N<<1][20];
int w[N<<1];
void dfs(int pre,int u)
//从u点开始dfs,pre为其父亲点
{
dep[u] = dep[pre]+1;
f[u][0] = pre;
for(int i=1;i<=logn && f[u][i-1];i++)
f[u][i] = f[f[u][i-1]][i-1]; int len = tr[u].size();
for(int i=0;i<len;i++)
dfs(u,tr[u][i]);
} int lca(int u,int v)
{
if(dep[u]<dep[v]) swap(u,v);
for(int i=logn;i>=0;i--)
if(dep[f[u][i]] >= dep[v])
u = f[u][i];
for(int i=logn;i>=0;i--)
if(f[u][i] != f[v][i])
{
u = f[u][i]; v = f[v][i];
}
if(u!=v) u = f[u][0];
return u;
} int main()
{
scanf("%d%d%d",&n,&m,&k);
num = n;
for(int i=1;i<=m;i++)
scanf("%d%d%d",&e[i].x,&e[i].y,&e[i].val);
sort(e+1,e+m+1);
for(int i=1;i<=(n<<1);i++)
fa[i] = i;
int fx,fy;
for(int i=1,sum = 0;i<=m&&sum<n-1;i++)//建重构树
{
fx = find(e[i].x);
fy = find(e[i].y);
if(fx != fy)
{
w[++num] = e[i].val;
fa[fx] = fa[fy] = num;
AddEdge(fx,num);
AddEdge(fy,num);
sum++;
}
}
logn = log(num)/log(2);
int x,y;
dfs(0,num);//在重构树上跑次dfs,后面再来求lca
while(k--)
{
scanf("%d%d",&x,&y);
printf("%d\n",w[lca(x,y)]);
}
return 0;
}
Krustal重构树的更多相关文章
- [bzoj 3732] Network (Kruskal重构树)
kruskal重构树 Description 给你N个点的无向图 (1 <= N <= 15,000),记为:1-N. 图中有M条边 (1 <= M <= 30,000) ,第 ...
- 【BZOJ 3545】【ONTAK 2010】Peaks & 【BZOJ 3551】【ONTAK 2010】Peaks加强版 Kruskal重构树
sunshine的A题我竟然调了一周!!! 把循环dfs改成一个dfs就可以,,,我也不知道为什么这样就不会RE,但它却是A了,,, 这周我一直在调这个题,总结一下智障错误: 1.倍增的范围设成了n而 ...
- 【BZOJ 3732】 Network Kruskal重构树+倍增LCA
Kruskal重构树裸题, Sunshine互测的A题就是Kruskal重构树,我通过互测了解到了这个神奇的东西... 理解起来应该没什么难度吧,但是我的Peaks连WA,,, 省选估计要滚粗了TwT ...
- 【BZOJ-3545&3551】Peaks&加强版 Kruskal重构树 + 主席树 + DFS序 + 倍增
3545: [ONTAK2010]Peaks Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 1202 Solved: 321[Submit][Sta ...
- BZOJ 3551: [ONTAK2010]Peaks加强版 [Kruskal重构树 dfs序 主席树]
3551: [ONTAK2010]Peaks加强版 题意:带权图,多组询问与一个点通过边权\(\le lim\)的边连通的点中点权k大值,强制在线 PoPoQQQ大爷题解传送门 说一下感受: 容易发现 ...
- bzoj 3551 kruskal重构树dfs序上的主席树
强制在线 kruskal重构树,每两点间的最大边权即为其lca的点权. 倍增找,dfs序对应区间搞主席树 #include<cstdio> #include<cstring> ...
- kruskal重构树学习笔记
\(kruskal\) 重构树学习笔记 前言 \(8102IONCC\) 中考到了,本蒟蒻不会,所以学一下. 前置知识 \(kruskal\) 求最小(大)生成树,树上求 \(lca\). 算法详 ...
- 『Kruscal重构树 Exkruscal』
新增一道例题及讲解 Exkruscal \(Exkruscal\)又称\(Kruscal\)重构树,是一种利用经典算法\(Kruscal\)来实现的构造算法,可以将一张无向图重构为一棵具有\(2n-1 ...
- Kruskal重构树入门
这个知识点好像咕咕咕了好长了..趁还没退役赶紧补一下吧.. 讲的非常简略,十分抱歉.. 前置知识 Kruskal算法 一定的数据结构基础(如主席树) Kruskal重构树 直接bb好像不是很好讲,那就 ...
随机推荐
- 神经网络中的反向传播法--bp【转载】
from: 作者:Charlotte77 出处:http://www.cnblogs.com/charlotte77/ 一文弄懂神经网络中的反向传播法——BackPropagation 最近在看深度学 ...
- WithEvents的一些用法
WithEvents的一些用法说明:1.WithEvents是指定一个或多个已声明成员变量引用可引发事件的类的实例.2.当某个变量是使用 WithEvents 定义时,可以用声明方式指定某个方法使用 ...
- CH0805 防线 (二分值域,前缀和,特殊性质)
$ CH~0805~ $ 防线 (二分值域,前缀和,特殊性质) $ solution: $ 注意博主所给题面的输出和原题有些不同 这道题当时想了很久很久,就是想不到怎么写.果然还是太 $ vegeta ...
- CSS3——制作人物走路的小动画
一个很简单的小动画,但是还挺有意思的,就是找这种图片很麻烦,我这里把我找的一张图片贴上来,这张图片是我在网上找的,又改了背景色和大小. <!DOCTYPE html> <html l ...
- 快速掌握Eclipse Plugin / RCP开发思想
本文转载:https://my.oschina.net/drjones/blog/280337 引言 本文不是快速入门的文章,只面向有一定基础的开发人员,至少看这篇文章之前你应该了解什么是Eclips ...
- 阿里云 Serverless 应用引擎(SAE)发布 v1.2.0,支持一键启停、NAS 存储、小规格实例等实用特性
近日,阿里云 Serverless 应用引擎(SAE)发布 v1.2.0版本,新版本实现了以下新功能/新特性: 一键启停开发测试环境:企业开发测试环境一般晚上不常用,长期保有应用实例,闲置浪费很高.使 ...
- PHP获取数组最大值下标的方法
<?php $hots = array('8213'=> 0,'8212'=> 100,'8172'=> 10008); $key = array_search(max($ho ...
- win10 1903
Windows 10 v1903/19H1 and Windows Server 2019 v1903/19H1 will hang or BSOD during power-on when vIOM ...
- 解决RHEL6 vncserver 启动 could not open default font 'fixed'错误.
https://blog.csdn.net/silencegll/article/details/51320629
- Python爬虫数据保存到MongoDB中
MongoDB是一款由C++语言编写的非关系型数据库,是一个基于分布式文件存储的开源数据库系统,其内容存储方式类似于JSON对象,它的字段值可以是其它文档或数组,但其数据类型只能是String文本型. ...