【卷积神经网络-进化史】从LeNet到AlexNet

本博客是【卷积神经网络-进化史】的第一部分《从LeNet到AlexNet》

如需转载,请附上本文链接:http://blog.csdn.net/cyh_24/article/details/51440344

更多相关博客请猛戳:http://blog.csdn.net/cyh_24

本系列博客是对刘昕博士的《CNN的近期进展与实用技巧》的一个扩充性资料。

主要讨论CNN的发展,并且引用刘昕博士的思路,对CNN的发展作一个更加详细的介绍,将按下图的CNN发展史进行描述:

上图所示是刘昕博士总结的CNN结构演化的历史,起点是神经认知机模型,此时已经出现了卷积结构,经典的LeNet诞生于1998年。然而之后CNN的锋芒开始被SVM等手工设计的特征盖过。随着ReLU和dropout的提出,以及GPU和大数据带来的历史机遇,CNN在2012年迎来了历史突破–AlexNet.

CNN的演化路径可以总结为以下几个方向:

  • 从LeNet到AlexNet
  • 进化之路一:网络结构加深
  • 进化之路二:加强卷积功能
  • 进化之路三:从分类到检测
  • 进化之路四:新增功能模块

本系列博客将对CNN发展的四条路径中最具代表性的CNN模型结构进行讲解。


一切的开始( LeNet)

下图是广为流传LeNet的网络结构,麻雀虽小,但五脏俱全,卷积层、pooling层、全连接层,这些都是现代CNN网络的基本组件。

  • 输入尺寸:32*32
  • 卷积层:3个
  • 降采样层:2个
  • 全连接层:1个
  • 输出:10个类别(数字0-9的概率)

因为LeNet可以说是CNN的开端,所以这里简单介绍一下各个组件的用途与意义。

Input (32*32)

输入图像Size为32*32。这要比mnist数据库中最大的字母(28*28)还大。这样做的目的是希望潜在的明显特征,如笔画断续、角点能够出现在最高层特征监测子感受野的中心。

C1, C3, C5 (卷积层)

卷积核在二维平面上平移,并且卷积核的每个元素与被卷积图像对应位置相乘,再求和。通过卷积核的不断移动,我们就有了一个新的图像,这个图像完全由卷积核在各个位置时的乘积求和的结果组成。

二维卷积在图像中的效果就是: 

对图像的每个像素的邻域(邻域大小就是核的大小)加权求和得到该像素点的输出值。具体做法如下:

卷积运算一个重要的特点就是: 通过卷积运算,可以使原信号特征增强,并且降低噪音。

不同的卷积核能够提取到图像中的不同特征,这里有 在线demo,下面是不同卷积核得到的不同的feature
map,

以C1层进行说明:C1层是一个卷积层,有6个卷积核(提取6种局部特征),核大小为5*5,能够输出6个特征图Feature Map,大小为28*28。C1有156个可训练参数(每个滤波器5*5=25个unit参数和一个bias参数,一共6个滤波器,共(5*5+1)6=156个参数),共156 (28*28)=122,304个连接。

S2, S4 (pooling层)

S2, S4是下采样层,是为了降低网络训练参数及模型的过拟合程度。池化/采样的方式通常有以下两种:

  1. Max-Pooling: 选择Pooling窗口中的最大值作为采样值;
  2. Mean-Pooling: 将Pooling窗口中的所有值相加取平均,以平均值作为采样值;

S2层是6个14*14的feature map,map中的每一个单元于上一层的 2*2 领域相连接,所以,S2层是C1层的1/4。

F6 (全连接层)

F6是全连接层,类似MLP中的一个layer,共有84个神经元(为什么选这个数字?跟输出层有关),这84个神经元与C5层进行全连接,所以需要训练的参数是:(120+1)*84=10164. 

如同经典神经网络,F6层计算输入向量和权重向量之间的点积,再加上一个偏置。然后将其传递给sigmoid函数产生单元i的一个状态。

Output (输出层)

输出层由欧式径向基函数(Euclidean Radial Basis Function)单元组成,每类一个单元,每个有84个输入。 

换句话说,每个输出RBF单元计算输入向量和参数向量之间的欧式距离。输入离参数向量越远,RBF输出的越大。用概率术语来说,RBF输出可以被理解为F6层配置空间的高斯分布的负log-likelihood。给定一个输式,损失函数应能使得F6的配置与RBF参数向量(即模式的期望分类)足够接近。


王者回归(AlexNet)

AlexNet 可以说是具有历史意义的一个网络结构,可以说在AlexNet之前,深度学习已经沉寂了很久。历史的转折在2012年到来,AlexNet 在当年的ImageNet图像分类竞赛中,top-5错误率比上一年的冠军下降了十个百分点,而且远远超过当年的第二名。

AlexNet 之所以能够成功,深度学习之所以能够重回历史舞台,原因在于:

  1. 非线性激活函数:ReLU
  2. 防止过拟合的方法:Dropout,Data augmentation
  3. 大数据训练:百万级ImageNet图像数据
  4. 其他:GPU实现,LRN归一化层的使用

下面简单介绍一下AlexNet的一些细节:

Data augmentation

有一种观点认为神经网络是靠数据喂出来的,若增加训练数据,则能够提升算法的准确率,因为这样可以避免过拟合,而避免了过拟合你就可以增大你的网络结构了。当训练数据有限的时候,可以通过一些变换来从已有的训练数据集中生成一些新的数据,来扩大训练数据的size。

其中,最简单、通用的图像数据变形的方式:

  1. 从原始图像(256,256)中,随机的crop出一些图像(224,224)。【平移变换,crop】
  2. 水平翻转图像。【反射变换,flip】
  3. 给图像增加一些随机的光照。【光照、彩色变换,color jittering】

AlexNet 训练的时候,在data augmentation上处理的很好:

  • 随机crop。训练时候,对于256*256的图片进行随机crop到224*224,然后允许水平翻转,那么相当与将样本倍增到((256-224)^2)*2=2048。
  • 测试时候,对左上、右上、左下、右下、中间做了5次crop,然后翻转,共10个crop,之后对结果求平均。作者说,不做随机crop,大网络基本都过拟合(under substantial overfitting)。
  • 对RGB空间做PCA,然后对主成分做一个(0, 0.1)的高斯扰动。结果让错误率又下降了1%。

ReLU 激活函数

Sigmoid 是常用的非线性的激活函数,它能够把输入的连续实值“压缩”到0和1之间。特别的,如果是非常大的负数,那么输出就是0;如果是非常大的正数,输出就是1. 

但是它有一些致命的 缺点:

  • Sigmoids saturate and kill gradients. sigmoid 有一个非常致命的缺点,当输入非常大或者非常小的时候,会有饱和现象,这些神经元的梯度是接近于0的。如果你的初始值很大的话,梯度在反向传播的时候因为需要乘上一个sigmoid 的导数,所以会使得梯度越来越小,这会导致网络变的很难学习。
  • Sigmoid 的 output 不是0均值. 这是不可取的,因为这会导致后一层的神经元将得到上一层输出的非0均值的信号作为输入。 

    产生的一个结果就是:如果数据进入神经元的时候是正的(e.g. x>0 elementwise
    in f=wTx+b),那么 w 计算出的梯度也会始终都是正的。 

    当然了,如果你是按batch去训练,那么那个batch可能得到不同的信号,所以这个问题还是可以缓解一下的。因此,非0均值这个问题虽然会产生一些不好的影响,不过跟上面提到的 kill gradients 问题相比还是要好很多的。

ReLU 的数学表达式如下:

f(x)=max(0,x)

很显然,从图左可以看出,输入信号<0时,输出都是0,>0 的情况下,输出等于输入。w 是二维的情况下,使用ReLU之后的效果如下:

Alex用ReLU代替了Sigmoid,发现使用 ReLU 得到的SGD的收敛速度会比 sigmoid/tanh 快很多。

主要是因为它是linear,而且 non-saturating(因为ReLU的导数始终是1),相比于 sigmoid/tanh,ReLU 只需要一个阈值就可以得到激活值,而不用去算一大堆复杂的运算。

关于激活函数更多内容,请移步我的另一篇文章:激活函数-面面观

Dropout

结合预先训练好的许多不同模型,来进行预测是一种非常成功的减少测试误差的方式(Ensemble)。但因为每个模型的训练都需要花了好几天时间,因此这种做法对于大型神经网络来说太过昂贵。

然而,AlexNet 提出了一个非常有效的模型组合版本,它在训练中只需要花费两倍于单模型的时间。这种技术叫做Dropout,它做的就是以0.5的概率,将每个隐层神经元的输出设置为零。以这种方式“dropped out”的神经元既不参与前向传播,也不参与反向传播。

所以每次输入一个样本,就相当于该神经网络就尝试了一个新的结构,但是所有这些结构之间共享权重。因为神经元不能依赖于其他特定神经元而存在,所以这种技术降低了神经元复杂的互适应关系。

正因如此,网络需要被迫学习更为鲁棒的特征,这些特征在结合其他神经元的一些不同随机子集时有用。在测试时,我们将所有神经元的输出都仅仅只乘以0.5,对于获取指数级dropout网络产生的预测分布的几何平均值,这是一个合理的近似方法。

多GPU训练

单个GTX 580 GPU只有3GB内存,这限制了在其上训练的网络的最大规模。因此他们将网络分布在两个GPU上。 

目前的GPU特别适合跨GPU并行化,因为它们能够直接从另一个GPU的内存中读出和写入,不需要通过主机内存。

他们采用的并行方案是:在每个GPU中放置一半核(或神经元),还有一个额外的技巧:GPU间的通讯只在某些层进行。

例如,第3层的核需要从第2层中所有核映射输入。然而,第4层的核只需要从第3层中位于同一GPU的那些核映射输入。

Local Responce Normalization

一句话概括:本质上,这个层也是为了防止激活函数的饱和的。

个人理解原理是通过正则化让激活函数的输入靠近“碗”的中间(避免饱和),从而获得比较大的导数值。

所以从功能上说,跟ReLU是重复的。

不过作者说,从试验结果看,LRN操作可以提高网络的泛化能力,将错误率降低了大约1个百分点。

AlexNet 优势在于:网络增大(5个卷积层+3个全连接层+1个softmax层),同时解决过拟合(dropout,data augmentation,LRN),并且利用多GPU加速计算

【神经网络与深度学习】卷积神经网络-进化史:从LeNet到AlexNet的更多相关文章

  1. Spark MLlib Deep Learning Convolution Neural Network (深度学习-卷积神经网络)3.1

    3.Spark MLlib Deep Learning Convolution Neural Network (深度学习-卷积神经网络)3.1 http://blog.csdn.net/sunbow0 ...

  2. Spark MLlib Deep Learning Convolution Neural Network (深度学习-卷积神经网络)3.2

    3.Spark MLlib Deep Learning Convolution Neural Network(深度学习-卷积神经网络)3.2 http://blog.csdn.net/sunbow0 ...

  3. Spark MLlib Deep Learning Convolution Neural Network (深度学习-卷积神经网络)3.3

    3.Spark MLlib Deep Learning Convolution Neural Network(深度学习-卷积神经网络)3.3 http://blog.csdn.net/sunbow0 ...

  4. 深度学习——卷积神经网络 的经典网络(LeNet-5、AlexNet、ZFNet、VGG-16、GoogLeNet、ResNet)

    一.CNN卷积神经网络的经典网络综述 下面图片参照博客:http://blog.csdn.net/cyh_24/article/details/51440344 二.LeNet-5网络 输入尺寸:32 ...

  5. deeplearning.ai 神经网络和深度学习 week2 神经网络基础 听课笔记

    1. Logistic回归是用于二分分类的算法. 对于m个样本的训练集,我们可能会习惯于使用for循环一个个处理,但在机器学习中,是把每一个样本写成一个列向量x,然后把m个列向量拼成一个矩阵X.这个矩 ...

  6. deeplearning.ai 神经网络和深度学习 week2 神经网络基础

    1. Logistic回归是用于二分分类的算法. 对于m个样本的训练集,我们可能会习惯于使用for循环一个个处理,但在机器学习中,是把每一个样本写成一个列向量x,然后把m个列向量拼成一个矩阵X.这个矩 ...

  7. 【神经网络与深度学习】卷积神经网络(CNN)

    [神经网络与深度学习]卷积神经网络(CNN) 标签:[神经网络与深度学习] 实际上前面已经发布过一次,但是这次重新复习了一下,决定再发博一次. 说明:以后的总结,还应该以我的认识进行总结,这样比较符合 ...

  8. 深入学习卷积神经网络(CNN)的原理知识

    网上关于卷积神经网络的相关知识以及数不胜数,所以本文在学习了前人的博客和知乎,在别人博客的基础上整理的知识点,便于自己理解,以后复习也可以常看看,但是如果侵犯到哪位大神的权利,请联系小编,谢谢.好了下 ...

  9. 【吴恩达课后测验】Course 1 - 神经网络和深度学习 - 第一周测验【中英】

    [吴恩达课后测验]Course 1 - 神经网络和深度学习 - 第一周测验[中英] 第一周测验 - 深度学习简介 和“AI是新电力”相类似的说法是什么? [  ]AI为我们的家庭和办公室的个人设备供电 ...

  10. 对比《动手学深度学习》 PDF代码+《神经网络与深度学习 》PDF

    随着AlphaGo与李世石大战的落幕,人工智能成为话题焦点.AlphaGo背后的工作原理"深度学习"也跳入大众的视野.什么是深度学习,什么是神经网络,为何一段程序在精密的围棋大赛中 ...

随机推荐

  1. SQL手工注入技巧

    MYSQL篇 1.内置函数和变量 @@datadir,version(),database(),user(),load_file(),outfile() 2.利用concat(),group_conc ...

  2. dede 调取二级三级菜单栏目

    {dede:channelartlist typeid='} <div class="cate-item"> <div class="cate-item ...

  3. LINUX装机问题:无法使用“Ctrl+Alt+[F1~F6]”快捷键切换到终端

    用VMware装LINUX虚拟机之后,你会发现在X Window的登陆界面无法使用“Ctrl+Alt+[F1~F6]”快捷键切换到终端,这是因为VMware默认的快捷键也是Ctrl+Alt,所以你只需 ...

  4. C# 跨线程访问控件(MethodInvoker)

    参考:https://www.cnblogs.com/lvdongjie/p/5428815.html .Net 通常禁止跨线程访问控件,设置Control.CheckForIllegalCrossT ...

  5. Windows环境下MySQL面试技巧

    对话一: 面试官:重新安装mysql卡在最后一步,怎么解决? 应聘者:第一次安装完mysql,由于各种原因需要重新安装是经常遇到的问题,解决方案如下.              1)在注册表里搜索my ...

  6. Release和Debug的区别

    Debug与Release版本的区别 Debug 和 Release 并没有本质的区别,他们只是VC预定义提供的两组编译选项的集合,编译器只是按照预定的选项行动.如果我们愿意,我们完全可以把Debug ...

  7. php l练习(写着玩)

    需求:假设今天24号,今天发表的评论显示几小时前发布,23号发布的显示 昨天几点发布的,再往前的就直接显示年月日. date_default_timezone_set('PRC'); // $crea ...

  8. jquery grid 显示隐藏列

    colModel: [ { label: '列名称', name: 'columnName', width: 100, align: 'left' } ] function showData() { ...

  9. poj 3579 Median 二分套二分 或 二分加尺取

    Median Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 5118   Accepted: 1641 Descriptio ...

  10. java 基础类型和包装类的详解

    摘自:JAVA中基本类型的包装类 1. 包装类把基本类型数据转换为对象     每个基本类型在java.lang包中都有一个相应的包装类 2. 包装类有何作用     提供了一系列实用的方法     ...