旧题解:https://blog.csdn.net/gmh77/article/details/99066792#commentBox

之前写的有些奇怪,不能体现这道题的sb所以再推一遍

\(\because n=\sum_{d \mid n}{\varphi(d)}\)

\(\therefore \sum_{i=1}^{n}{f(i)}=\sum_{n}{\prod{{a_i}^{\left \lfloor \frac{p_i}{2} \right \rfloor}}}\)

\(=\sum_{n}{\sum_{\prod{{a_i}^{\left \lfloor \frac{p_i}{2} \right \rfloor}} \mid d}{\varphi(d)}}\)

\(=\sum_{d=1}^{\left \lfloor \sqrt{n} \right \rfloor}{\varphi(d)\sum_{n}{[d^2\mid n]}}\)$

\(=\sum_{d=1}^{\left \lfloor \sqrt{n} \right \rfloor}{\varphi(d)*\left \lfloor \frac{n}{d^2} \right \rfloor}\)

Comet OJ - Contest #8 E.神奇函数的更多相关文章

  1. Comet OJ - Contest #2 简要题解

    Comet OJ - Contest #2 简要题解 cometoj A 模拟,复杂度是对数级的. code B 易知\(p\in[l,r]\),且最终的利润关于\(p\)的表达式为\(\frac{( ...

  2. Comet OJ - Contest #2简要题解

    Comet OJ - Contest #2简要题解 前言: 我没有小裙子,我太菜了. A 因自过去而至的残响起舞 https://www.cometoj.com/contest/37/problem/ ...

  3. Comet OJ - Contest #4--前缀和

    原题:Comet OJ - Contest #4-B https://www.cometoj.com/contest/39/problem/B?problem_id=1577传送门 一开始就想着暴力打 ...

  4. Comet OJ - Contest #11 题解&赛后总结

    Solution of Comet OJ - Contest #11 A.eon -Problem designed by Starria- 在模 10 意义下,答案变为最大数的最低位(即原数数位的最 ...

  5. Comet OJ - Contest #8

    Comet OJ - Contest #8 传送门 A.杀手皇后 签到. Code #include <bits/stdc++.h> using namespace std; typede ...

  6. Comet OJ - Contest #13-C2

    Comet OJ - Contest #13-C2 C2-佛御石之钵 -不碎的意志-」(困难版) 又是一道并查集.最近做过的并查集的题貌似蛮多的. 思路 首先考虑,每次处理矩形只考虑从0变成1的点.这 ...

  7. Comet OJ - Contest #13 「火鼠的皮衣 -不焦躁的内心-」

    来源:Comet OJ - Contest #13 芝士相关: 复平面在信息学奥赛中的应用[雾 其实是道 sb 题??? 发现原式貌似十分可二项式定理,然后发现确实如此 我们把 \(a^i\) 替换成 ...

  8. Comet OJ - Contest #13 「佛御石之钵 -不碎的意志-」(hard)

    来源:Comet OJ - Contest #13 一眼并查集,然后发现这题 tmd 要卡常数的说卧槽... 发现这里又要用并查集跳过访问点,又要用并查集维护联通块,于是开俩并查集分别维护就好了 一开 ...

  9. Comet OJ - Contest #5

    Comet OJ - Contest #5 总有一天,我会拿掉给\(dyj\)的小裙子的. A 显然 \(ans = min(cnt_1/3,cnt_4/2,cnt5)\) B 我们可以感性理解一下, ...

随机推荐

  1. springboot mybatis下临时表的创建和删除,可用于查重去重

    /** * 创建临时表 */ @Update({"drop temporary table if exists ${tableName};", "create tempo ...

  2. C语言循环队列

    #include<stdio.h> #include<stdlib.h> #include<string.h> //循环队列 typedef struct { in ...

  3. 应用安全 - 免杀 - 工具 - the-backdoor-factory - 使用|命令 - 汇总

    安装 Kali下方式一: git clone https://github.com/secretsquirrel/the-backdoor-factory方式二: apt-get install ba ...

  4. tail命令 查看文件尾部 输出文件后n行,默认查看文件的后10行

    tail命令 查看文件尾部  用于查看日志 默认查看文件的后10行 -n 3 数字   也可以忽略-n 直接加数字 tail 3 查看文件后3行 [root@localhost ~]# tail /e ...

  5. AKKA学习(二) 未完

    Actor调用 从上面的例子中,我们可以大概的对AKKA在JAVA中的使用有一个全局的概念.这里我们在稍微细致的讲解一下. 在JAVA中使用AKKA进行开发主要有这几个步骤: 定义消息模型. 创建Ac ...

  6. python pycharm 注册码

    D87IQPUU3Q-eyJsaWNlbnNlSWQiOiJEODdJUVBVVTNRIiwibGljZW5zZWVOYW1lIjoiTnNzIEltIiwiYXNzaWduZWVOYW1lIjoiI ...

  7. hdu2444The Accomodation of Students (最大匹配+判断是否为二分图)

    题意 首先判断所有的人可不可以分成两部分,每部分内的所有人都相互不认识.如果可以分成 则求两部分最多相互认识的对数. 解题 类似分成两组,同组互不相关,就可能使判断是否为二分图 能否分成两部分 则是判 ...

  8. 运维ipvsadm配置负载均衡2

    一.什么是lvs1.lvs的定义LVS是Linux Virtual Server的简写,意即Linux虚拟服务器,是一个虚拟的服务器集群系统.是由章文嵩博士开发的一款开源软件,1998年5月发布,是中 ...

  9. java冒泡排序小实例

    首先我们了解下什么是冒泡排序: 冒泡排序就是把小的元素往前调或者把大的元素往后调.比较是相邻的两个元素比较,交换也发生在这两个元素之间.所以,如果两个元素相等,我想你是不会再无聊地把他们俩交换一下的: ...

  10. 【原】iptables 交叉编译

    防火墙在做数据包过滤决定时,有一套遵循和组成的规则,这些规则存储在专用的数据包过滤表中,而这些表集成在 Linux 内核中.在数据包过滤表中,规则被分组放在我们所谓的链(chain)中.而netfil ...