[CodeForces - 1225E]Rock Is Push 【dp】【前缀和】

标签:题解 codeforces题解 dp 前缀和


题目描述

Time limit

2000 ms

Memory limit

524288 kB

Source

Technocup 2020 - Elimination Round 2

Tags

binary search dp *2200

Site

https://codeforces.com/problemset/problem/1225/E

题面

Example

Input1

1 1

.

Output1

1

Input2

2 3

...

..R

Output2

0

Input3

4 4

...R

.RR.

.RR.

R...

Output3

4

题目大意

给定\(n, m\),和一张长宽分别为\(n,m\)的地图。\(\cdot\)代表可以通过,\(R\)代表岩石,无法通过。一个人从左上\((1,1)\)出发,想要到达右下\((n, m)\),他每步只能向下或向右走一格。其间他可以推动与他相邻的一连串岩石一格,根据他从上一步到达这格的方向,但不能将岩石推出地图。问一共有多少条不同的走法?

例如,

\(n = 4, m = 4\),地图为

\[\cdot \cdot \cdot R \\ \cdot R R \cdot \\ \cdot R R \cdot \\ R \cdot \cdot \cdot \\
\]

有如下四条路径,用\(PushD\)代表向下推岩石,用\(PushR\)代表向右推岩石:

  1. \((1,1) \to (2,1) \to(3,1) \to PushR \to(3,2) \to(4,2) \to(4,3) \to(4,4)\)
  2. \((1,1) \to(2,1)\to PushR \to(2,2)\to PushD \to(3,2)\to PushR \to(3,3)\to (4,3)\to (4,4)\)
  3. \((1,1) \to(1,2)\to PushD \to(2,2)\to PushR \to(2,3)\to PushD \to(3,3)\to (3,4)\to (4,4)\)
  4. \((1,1) \to(1,2)\to (1,3)\to PushD \to(2,3)\to (2,4)\to (3,4)\to (4,4)\)

解析

  • 询问从\((1,1)\)走到\((n, m)\)的路径条数,我们也可以反过考虑从\((n, m)\)走到\((1,1)\)的路径条数。

  • 我们令\(dpR[i][j]\)表示从\((i,j)\)的右边一格即从\((i, j + 1)\)到达\((i,j)\)的路径条数,令\(dpD[i][j]\)表示从\((i,j)\)的下边一格即从\((i + 1, j)\)到达\((i,j)\)的路径条数。令\(kD, kR\)分别为从\((i,j)\)到此列最下端和此行最右端的岩石总数。因为岩石可以向右推至地图边缘,所以我们易得$$dpD[i][j] = \sum_{t=i + 1}^{n - kD}dpR[t][j].$$将此列中行坐标在区间\([i+1, n-kD]\)的全部能从右边到达的路径条数都加入\(dpD[i][j]\)中。



    计算\(dpD\)示意图

    同理,我们可得$$dpR[i][j] = \sum_{t=j + 1}^{m - kR}dpD[i][t].$$

  • 为了得到每点的\(kR,kD\),我们需要分别预处理一下每行每列从右至左,从下至上的岩石数量的前缀和。

    \((i,j)\)以右(包括\((i,j)\))的全部岩石数量:\(numR[i][j] = numR[i][j + 1] + (s[i][j] == \,'R')\);

    \((i,j)\)以下(包括\((i,j)\))的全部岩石数量:\(numD[i][j] = numD[i + 1][j] + (s[i][j] == \,'R')\)。



计算岩石总数前缀和

  • 看到如上的累加公式,我们很容易想到要用前缀和来处理。否则时间复杂度会升到立方。

    我们令$$ sumD[i][j] = sumD[i][j + 1] + dpD[i][j], \ sumR[i][j] = sumR[i + 1][j] + dpR[i][j].$$

    则原公式可优化为$$\begin{cases}dpD[n][m] = dpR[n][m] = 1, \dpD[i][j] = \sum_{t=i + 1}^{n - numD[i][j]}dpR[t][j] = sumR[i + 1][j] - sumR[n - numD[i][j] + 1][j], \ dpR[i][j]= \sum_{t=j + 1}^{m - numR[i][j]}dpD[i][t] = sumD[i][j + 1] - sumD[i][m - numR[i][j] + 1] \end{cases}.$$

  • 最后答案即为\(dpD[1][1] + dpR[1][1]\),注意随时取模。

  • 存在两种情况需要特判,详见代码。

以第三个样例为例试举两例,



计算(2,1)的\(dpD\)和\(dpR\)



计算(1,1)的\(dpD\)和\(dpR\)


通过代码

/*
Status
Accepted
Time
108ms
Memory
102804kB
Length
1284
Lang
GNU G++11 5.1.0
Submitted
2019-12-23 18:13:00
RemoteRunId
67463663
*/ #include <bits/stdc++.h>
using namespace std; const int MOD = 1e9 + 7; //随时取模.
const int MAXN = 2e3 + 50; char s[MAXN][MAXN];
int numD[MAXN][MAXN], numR[MAXN][MAXN], sumD[MAXN][MAXN], sumR[MAXN][MAXN], dpD[MAXN][MAXN], dpR[MAXN][MAXN];
int n, m; int main()
{
scanf("%d%d", &n, &m); for(int i = 1; i <= n; i ++)
scanf("%s", s[i] + 1); if(s[1][1] == 'R' || s[n][m] == 'R'){ //第一种特判情况,起点或终点被岩石占上,则没有路径可以到达.
printf("0");
return 0;
} if(n == 1 && m == 1){ //第二种特判情况,地图大小为1*1,则直接输出1.
printf("1");
return 0;
} for(int i = n; i >= 1; i --){ //从右下开始预处理岩石总数前缀和.
for(int j = m; j >= 1; j --){
numD[i][j] = numD[i + 1][j] + (s[i][j] == 'R');
numR[i][j] = numR[i][j + 1] + (s[i][j] == 'R');
}
} sumD[n][m] = sumR[n][m] = dpD[n][m] = dpR[n][m] = 1;
for(int i = n; i >= 1; i --){ //从右下开始状态转移.
for(int j = m; j >= 1; j --){
if(i == n && j == m) continue;
dpD[i][j] = (sumR[i + 1][j] - sumR[n - numD[i + 1][j] + 1][j]) % MOD;
dpR[i][j] = (sumD[i][j + 1] - sumD[i][m - numR[i][j + 1] + 1]) % MOD; sumD[i][j] = (sumD[i][j + 1] + dpD[i][j]) % MOD;
sumR[i][j] = (sumR[i + 1][j] + dpR[i][j]) % MOD;
}
} printf("%d", (dpR[1][1] + dpD[1][1] + 2ll * MOD) % MOD); //得出答案.
return 0;
}

[CodeForces - 1225E]Rock Is Push 【dp】【前缀和】的更多相关文章

  1. Codeforces Round #596 (Div. 2, based on Technocup 2020 Elimination Round 2) E. Rock Is Push dp

    E. Rock Is Push You are at the top left cell (1,1) of an n×m labyrinth. Your goal is to get to the b ...

  2. Codeforces 332B Maximum Absurdity(DP+前缀和处理)

    题目链接:http://codeforces.com/problemset/problem/332/B 题目大意:给你n个数和一个整数k,要求找到不相交的两个长度为k的区间,使得区间和最大,输出这两个 ...

  3. Codeforces 1247E. Rock Is Push

    传送门 显然考虑 $dp$ ,设 $fx[i][j]$ 表示从 $(i,j)$ 出发往下走一格,最终到达 $(n,m)$ 的方案数,$fy[i][j]$ 表示从 $(i,j)$ 出发往右走一格,最终到 ...

  4. CodeForces 816B Karen and Coffee(前缀和,大量查询)

    CodeForces 816B Karen and Coffee(前缀和,大量查询) Description Karen, a coffee aficionado, wants to know the ...

  5. HDU 2829 区间DP & 前缀和优化 & 四边形不等式优化

    HDU 2829 区间DP & 前缀和优化 & 四边形不等式优化 n个节点n-1条线性边,炸掉M条边也就是分为m+1个区间 问你各个区间的总策略值最少的炸法 就题目本身而言,中规中矩的 ...

  6. [BZOJ 3625] [Codeforces 438E] 小朋友的二叉树 (DP+生成函数+多项式开根+多项式求逆)

    [BZOJ 3625] [Codeforces 438E] 小朋友的二叉树 (DP+生成函数+多项式开根+多项式求逆) 题面 一棵二叉树的所有点的点权都是给定的集合中的一个数. 让你求出1到m中所有权 ...

  7. [Codeforces712D] Memory and Scores(DP+前缀和优化)(不用单调队列)

    [Codeforces712D] Memory and Scores(DP+前缀和优化)(不用单调队列) 题面 两个人玩游戏,共进行t轮,每人每轮从[-k,k]中选出一个数字,将其加到自己的总分中.已 ...

  8. T2988 删除数字【状压Dp+前缀和优化】

    Online Judge:从Topcoder搬过来,具体哪一题不清楚 Label:状压Dp+前缀和优化 题目描述 给定两个数A和N,形成一个长度为N+1的序列,(A,A+1,A+2,...,A+N-1 ...

  9. [CF467C] George and Job - DP,前缀和

    简单dp + 前缀和 你谷这乱标难度的风气真是-- #include <bits/stdc++.h> using namespace std; #define int long long ...

随机推荐

  1. ECS 按量付费转包年包月支持按周啦

    功能场景 不需要别的理由,就是省钱. 以 华北1 ecs.t5-c1m2.xlarge ( 4vCPU 8GB ) 为例:按量付费一周需要 131元,而按周付费只需要 68元. 如果您正在使用按量付费 ...

  2. 微信公众号开发(二)获取access_token

    参考:https://www.cnblogs.com/liuhongfeng/p/4848851.html 一:介绍. 接口调用请求说明 http请求方式: GET https://api.weixi ...

  3. luoguP3806 【模板】点分治1

    #include<bits/stdc++.h> #define setIO(s) freopen(s".in","r",stdin) #define ...

  4. 后端技术杂谈10:Docker 核心技术与实现原理

    本系列文章将整理到我在GitHub上的<Java面试指南>仓库,更多精彩内容请到我的仓库里查看 https://github.com/h2pl/Java-Tutorial 喜欢的话麻烦点下 ...

  5. 前端每日实战:124# 视频演示如何用纯 CSS 创作一只纸鹤

    效果预览 按下右侧的"点击预览"按钮可以在当前页面预览,点击链接可以全屏预览. https://codepen.io/comehope/pen/xagoYb 可交互视频 此视频是可 ...

  6. leetcode 155. 最小栈(c++)

    设计一个支持 push,pop,top 操作,并能在常数时间内检索到最小元素的栈. push(x) -- 将元素 x 推入栈中.pop() -- 删除栈顶的元素.top() -- 获取栈顶元素.get ...

  7. openstack介绍及共享组件——消息队列rabbitmq

    一.云计算的前世今生 所有的新事物都不是突然冒出来的,都有前世和今生.云计算也是IT技术不断发展的产物. 要理解云计算,需要对IT系统架构的发展过程有所认识. 请看下 IT系统架构的发展到目前为止大致 ...

  8. 2017/2/27-Laravel_资源控制器命令

    用于处理关于图片存储的 HTTP 请求,使用 Artisan 命令 make:controller,我们可以快速创建这样的控制器 : php artisan make:controller Photo ...

  9. Orcle获取当前时间加小时

    如下是oracle 获取当前数据库时间加2个小时 select to_date(TO_CHAR (SYSDATE, 'yyyy-mm-dd hh24:mi:ss'),'yyyy-mm-dd hh24: ...

  10. 微信小程序这一块(中)

    1.if语句跟for循环的使用 <block wx:if="{{n==1}}"> <view>1917</view> </block> ...