[BZOJ1023][SHOI2008]cactus仙人掌图 DP
套路就是先考虑一般的树上做法。求直径的dp的做法大家应该都会吧。
那么设\(dp[i]\)表示\(i\)的子树中的点到\(i\)的最大距离。
在dp的过程中
dp[i]=max\{dp[i],dp[j]\}
\]
上面的式子要按顺序跑。
然后考虑一个环。不妨假设这个环里面的点都是\(1..m\)。
那么依然有
\]
因为点对的顺序是无所谓的不妨假设\(i>j\)。这里的常规处理方法是断环成链之一,就是把数组再复制一遍,再限定\(i,j\)范围。
因为一定要取\(i,j\)的最短路,所以复制以后一定要有\(i-j\leq n/2\)。如果大于的话可以留到复制以后从\(j\)更新。
那么就相当于一定要取\(i-j\)了。于是上式可化为
\]
显然可以用单调队列转移。
最后环里面更新完答案有还要更新最上面的点的dp值,这个非常好想,就不说了。
#include<cstdio>
#include<algorithm>
#include<cmath>
#include<cstring>
using namespace std;
#define FEC(i,x,y) for(register int i=head[x],y=g[i].to;i;i=g[i].ne,y=g[i].to)
#define dbg(...) fprintf(stderr,__VA_ARGS__)
const int SZ=(1<<21)+1;char ibuf[SZ],*iS,*iT;
#ifdef ONLINE_JUDGE
#define gc() (iS==iT?(iT=(iS=ibuf)+fread(ibuf,1,SZ,stdin),(iS==iT?EOF:*iS++)):*iS++)
#else
#define gc() getchar()
#endif
template<typename I>inline void read(I&x){char c=gc();int f=0;for(;c<'0'||c>'9';c=gc())c=='-'?f=1:0;for(x=0;c>='0'&&c<='9';c=gc())x=(x<<1)+(x<<3)+(c&15);f?x=-x:0;}
template<typename A,typename B>inline char SMAX(A&a,const B&b){return a<b?a=b,1:0;}
template<typename A,typename B>inline char SMIN(A&a,const B&b){return a>b?a=b,1:0;}
typedef long long ll;typedef unsigned long long ull;typedef std::pair<int,int>pii;
const int N=50000+7,M=10000000+7;
int n,m,f[N],dp[N],ans;
struct Edge{int to,ne;}g[M<<1];int head[N],tot;
inline void Addedge(int x,int y){g[++tot].to=y;g[tot].ne=head[x];head[x]=tot;}
int s[N<<1],q[N<<1],hd,tl;
inline void Solve(int x,int rt){
int n=0;hd=1,tl=0;
for(int p=x;f[rt]!=p;p=f[p])s[++n]=p;
reverse(s+1,s+n+1);copy(s+1,s+n+1,s+n+1);n<<=1;
for(int i=1;i<=n;++i){
while(hd<=tl&&i-q[hd]>(n>>2))++hd;
if(hd<=tl)SMAX(ans,dp[s[i]]+dp[s[q[hd]]]+i-q[hd]);
while(hd<=tl&&dp[s[i]]-i>dp[s[q[tl]]]-q[tl])--tl;
q[++tl]=i;
}n>>=1;
for(int i=1;i<=n;++i)SMAX(dp[rt],dp[s[i]]+min(i-1,n-i+1));
}
int dfn[N],low[N],scc[N],sccno,dfc;
inline void Tarjan_dfs(int x,int fa=0){
dfn[x]=low[x]=++dfc;f[x]=fa;
FEC(i,x,y)if(y!=fa){
if(!dfn[y])Tarjan_dfs(y,x),SMIN(low[x],low[y]);
else SMIN(low[x],dfn[y]);
if(low[y]>dfn[x])SMAX(ans,dp[x]+dp[y]+1),SMAX(dp[x],dp[y]+1);
}
FEC(i,x,y)if(f[y]!=x&&dfn[y]>dfn[x])Solve(y,x);
}
int main(){
read(n),read(m);
for(int i=1;i<=m;++i){
int cnt,x,y;read(cnt);read(x);
while(cnt-->1)read(y),Addedge(x,y),Addedge(y,x),x=y;
}
Tarjan_dfs(1);printf("%d\n",ans);
}
[BZOJ1023][SHOI2008]cactus仙人掌图 DP的更多相关文章
- bzoj千题计划113:bzoj1023: [SHOI2008]cactus仙人掌图
http://www.lydsy.com/JudgeOnline/problem.php?id=1023 dp[x] 表示以x为端点的最长链 子节点与x不在同一个环上,那就是两条最长半链长度 子节点与 ...
- BZOJ1023:[SHOI2008]cactus仙人掌图(圆方树,DP,单调队列)
Description 如果某个无向连通图的任意一条边至多只出现在一条简单回路(simple cycle)里,我们就称这张图为仙人掌图(cactus). 所谓简单回路就是指在图上不重复经过任何一个顶点 ...
- BZOJ1023: [SHOI2008]cactus仙人掌图(仙人掌dp)
Time Limit: 1 Sec Memory Limit: 162 MBSubmit: 3467 Solved: 1438[Submit][Status][Discuss] Descripti ...
- BZOJ1023[SHOI2008]cactus仙人掌图 【仙人掌DP】
题目 如果某个无向连通图的任意一条边至多只出现在一条简单回路(simple cycle)里,我们就称这张图为仙人掌 图(cactus).所谓简单回路就是指在图上不重复经过任何一个顶点的回路. 举例来说 ...
- BZOJ1023: [SHOI2008]cactus仙人掌图(仙人掌)
Description 如果某个无向连通图的任意一条边至多只出现在一条简单回路(simple cycle)里,我们就称这张图为仙人掌图(cactus).所谓简单回路就是指在图上不重复经过任何一个顶点的 ...
- 1023: [SHOI2008]cactus仙人掌图(DP+单调队列优化)
这道题吗= =首先解决了我多年以来对仙人掌图的疑问,原来这种高大上的东西原来是这个啊= = 然后,看到这种题,首先必须的就是缩点= = 缩点完之后呢,变成在树上找最长路了= =直接树形dp了 那么那些 ...
- 2018.10.29 bzoj1023: [SHOI2008]cactus仙人掌图(仙人掌+单调队列优化dp)
传送门 求仙人掌的直径. 感觉不是很难. 分点在环上面和不在环上分类讨论. 不在环上直接树形dpdpdp. 然后如果在环上讨论一波. 首先对环的祖先有贡献的只有环上dfsdfsdfs序最小的点. 对答 ...
- [bzoj1023][SHOI2008]cactus 仙人掌图 (动态规划)
Description 如果某个无向连通图的任意一条边至多只出现在一条简单回路(simple cycle)里,我们就称这张图为仙人图(cactus).所谓简单回路就是指在图上不重复经过任何一个顶点的回 ...
- bzoj1023: [SHOI2008]cactus仙人掌图
学习了一下圆方树. 圆方树是一种可以处理仙人掌的数据结构,具体见这里:http://immortalco.blog.uoj.ac/blog/1955 简单来讲它是这么做的:用tarjan找环,然后对每 ...
随机推荐
- CF613D Kingdom and its Cities 虚树 + 树形DP
Code: #include<bits/stdc++.h> #define ll long long #define maxn 300003 #define RG register usi ...
- maven构建docker镜像异常
由于没有配置ip+2375端口,导致每次跑的时候,都是连接本地的,一直会报错 [ERROR] Failed to execute goal com.spotify:docker-maven-plugi ...
- sqlserver安装-1
原文地址: https://blog.csdn.net/qq_41432123/article/details/79053486 下载:(免费使用安装dev版) ed2k://|file|cn_sql ...
- Spring中@Async-异步处理
在Java应用中,绝大多数情况下都是通过同步的方式来实现交互处理的:但是在处理与第三方系统交互的时候,容易造成响应迟缓的情况,之前大部分都是使用多线程来完成此类任务,其实,在spring 3.x之后, ...
- (转)dial tcp 10.96.0.1:443: getsockopt: no route to host --- kubernetes(k8s)DNS 服务反复重启
转:https://blog.csdn.net/shida_csdn/article/details/80028905 kubernetes(k8s)DNS 服务反复重启解决: k8s.io/dns/ ...
- eureka注册中心wro.css wro.js 404
注册中心和配置中心放在一个module里面,如果不配置配种中心的访问前缀,会被config拦截.所以改动如下: package com.cloud.stagging.lhcloudeureka; im ...
- 从DBA_DDL_LOCKS视图获得DDL锁定信息
http://liwenshui322.iteye.com/blog/1166934 DDL锁有三种: 1.排他DDL锁(Exclusive DDL lock):这会防止其他会话得到它们自己的DDL锁 ...
- 小程序页面间传值(处理传值为对象,简单传值直接用options.XX的形式获取)
bookgoods:function(){ var Json = JSON.stringify(this.data.goods) wx.navigateTo({ url: '/pages/bookgo ...
- java反射机制-简单实例
public class Car { private String brand; private String color; private int maxSpeed; public Car() { ...
- Git003--创建版本库
Git--创建版本库 本文来自于:https://www.liaoxuefeng.com/wiki/0013739516305929606dd18361248578c67b8067c8c017b000 ...