题意:

n,m<=30

思路:

【问题分析】

二分图点权最大独立集,转化为最小割模型,从而用最大流解决。

【建模方法】

首先把棋盘黑白染色,使相邻格子颜色不同,所有黑色格子看做二分图X集合中顶点,白色格子看做Y集合顶点,建立附加源S汇T。

1、从S向X集合中每个顶点连接一条容量为格子中数值的有向边。

2、从Y集合中每个顶点向T连接一条容量为格子中数值的有向边。

3、相邻黑白格子Xi,Yj之间从Xi向Yj连接一条容量为无穷大的有向边。

求出网络最大流,要求的结果就是所有格子中数值之和减去最大流量。

【建模分析】

这是一个二分图最大点权独立集问题,就是找出图中一些点,使得这些点之间没有边相连,这些点的权值之和最大。独立集与覆盖集是互补的,求最大点权独立集可以转化为求最小点权覆盖集(最小点权

支配集)。最小点权覆盖集问题可以转化为最小割问题解决。结论:最大点权独立集 = 所有点权 - 最小点权覆盖集 = 所有点权 - 最小割集 = 所有点权 - 网络最大流。

对于一个网络,除去冗余点(不存在一条ST路径经过的点),每个顶点都在一个从S到T的路径上。割的性质就是不存在从S到T的路径,简单割可以认为割边关联的非ST节点为割点,而在二分图网络流模

型中每个点必关联到一个割点(否则一定还有增广路,当前割不成立),所以一个割集对应了一个覆盖集(支配集)。最小点权覆盖集就是最小简单割,求最小简单割的建模方法就是把XY集合之间的变容

量设为无穷大,此时的最小割就是最小简单割了。

有关二分图最大点权独立集问题,更多讨论见《最小割模型在信息学竞赛中的应用》作者胡伯涛。

 #include<bits/stdc++.h>
using namespace std;
typedef long long ll;
typedef unsigned int uint;
typedef unsigned long long ull;
typedef long double ld;
typedef pair<int,int> PII;
typedef pair<ll,ll> Pll;
typedef vector<int> VI;
typedef vector<PII> VII;
typedef pair<ll,ll>P;
#define N 100010
#define M 1000000
#define INF 1e9
#define fi first
#define se second
#define MP make_pair
#define pb push_back
#define pi acos(-1)
#define mem(a,b) memset(a,b,sizeof(a))
#define rep(i,a,b) for(int i=(int)a;i<=(int)b;i++)
#define per(i,a,b) for(int i=(int)a;i>=(int)b;i--)
#define lowbit(x) x&(-x)
#define Rand (rand()*(1<<16)+rand())
#define id(x) ((x)<=B?(x):m-n/(x)+1)
#define ls p<<1
#define rs p<<1|1 const ll MOD=1e9+,inv2=(MOD+)/;
double eps=1e-;
int dx[]={-,,,};
int dy[]={,,-,}; int head[N],vet[N],len[N],nxt[N],dis[N],
a[][],b[][],num[][],s,S,T,tot; int read()
{
int v=,f=;
char c=getchar();
while(c<||<c) {if(c=='-') f=-; c=getchar();}
while(<=c&&c<=) v=(v<<)+v+v+c-,c=getchar();
return v*f;
} void add(int a,int b,int c)
{
nxt[++tot]=head[a];
vet[tot]=b;
len[tot]=c;
head[a]=tot; nxt[++tot]=head[b];
vet[tot]=a;
len[tot]=;
head[b]=tot;
} bool bfs()
{
queue<int>q;
rep(i,,s) dis[i]=-;
q.push(S),dis[S]=;
while(!q.empty())
{
int u=q.front();
q.pop();
int e=head[u];
while(e)
{
int v=vet[e];
if(len[e]&&dis[v]==-)
{
dis[v]=dis[u]+;
q.push(v);
}
e=nxt[e];
}
}
return dis[T]!=-;
} int dfs(int u,int aug)
{
if(u==T) return aug;
int e=head[u],val=,flow=;
while(e)
{
int v=vet[e];
if(len[e]&&dis[v]==dis[u]+)
{
int t=dfs(v,min(len[e],aug));
if(!t)
{
e=nxt[e];
continue;
}
flow+=t;
aug-=t;
len[e]-=t;
len[e^]+=t;
if(!aug) break;
}
e=nxt[e];
}
if(!flow) dis[u]=-;
return flow;
} int maxflow()
{
int res=;
while(bfs()) res+=dfs(S,INF);
return res;
} int main()
{
int n=read(),m=read();
int ans=;
rep(i,,n)
rep(j,,m)
{
a[i][j]=read();
ans+=a[i][j];
} tot=;
s=;
rep(i,,n)
rep(j,,m) num[i][j]=++s; rep(i,,n)
rep(j,,m)
if((i+j+)&)
rep(k,,)
{
int x=i+dx[k],y=j+dy[k];
if(x>&&x<=n&&y>&&y<=m) add(num[i][j],num[x][y],INF);
}
S=++s,T=++s;
rep(i,,n)
rep(j,,m)
if((i+j+)&) add(S,num[i][j],a[i][j]);
else add(num[i][j],T,a[i][j]);
ans-=maxflow();
printf("%d\n",ans);
return ;
}

【PowerOJ1744&网络流24题】方格取数问题(最小割)的更多相关文章

  1. luogu2774 [网络流24题]方格取数问题 (最小割)

    常见套路:棋盘黑白染色,就变成了一张二分图 然后如果选了黑点,四周的白点就不能选了,也是最小割的套路.先把所有价值加起来,再减掉一个最少的不能选的价值,也就是割掉表示不选 建边(S,黑点i,v[i]) ...

  2. AC日记——[网络流24题]方格取数问题 cogs 734

    734. [网络流24题] 方格取数问题 ★★☆   输入文件:grid.in   输出文件:grid.out   简单对比时间限制:1 s   内存限制:128 MB «问题描述: 在一个有m*n ...

  3. Cogs 734. [网络流24题] 方格取数问题(最大闭合子图)

    [网络流24题] 方格取数问题 ★★☆ 输入文件:grid.in 输出文件:grid.out 简单对比 时间限制:1 s 内存限制:128 MB «问题描述: 在一个有m*n 个方格的棋盘中,每个方格 ...

  4. [网络流24题] 方格取数问题/骑士共存问题 (最大流->最大权闭合图)

    洛谷传送门 LOJ传送门 和太空飞行计划问题一样,这依然是一道最大权闭合图问题 “骑士共存问题”是“方格取数问题”的弱化版,本题解不再赘述“骑士共存问题”的做法 分析题目,如果我们能把所有方格的数都给 ...

  5. [网络流24题] 方格取数问题(cogs 734)

    «问题描述:在一个有m*n 个方格的棋盘中,每个方格中有一个正整数.现要从方格中取数,使任意2 个数所在方格没有公共边,且取出的数的总和最大.试设计一个满足要求的取数算法.«编程任务:对于给定的方格棋 ...

  6. HDU 1569 方格取数(2) (最小割)

    方格取数(2) Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Total Su ...

  7. LuoguP2774 方格取数问题(最小割)

    题目背景 none! 题目描述 在一个有 m*n 个方格的棋盘中,每个方格中有一个正整数.现要从方格中取数,使任意 2 个数所在方格没有公共边,且取出的数的总和最大.试设计一个满足要求的取数算法.对于 ...

  8. 洛谷P2774 方格取数问题(最小割)

    题意 $n \times m$的矩阵,不能取相邻的元素,问最大能取多少 Sol 首先补集转化一下:最大权值 = sum - 使图不连通的最小权值 进行黑白染色 从S向黑点连权值为点权的边 从白点向T连 ...

  9. P2762 [网络流24题]太空飞行计划问题(最小割)

    地址 最大权闭合子图裸题,不说了吧,求方案就是把s集遍历一遍. 错误记录:dfs那块忘判断残量了,11分×1. #include<cstdio> #include<iostream& ...

  10. XTU 二分图和网络流 练习题 C. 方格取数(1)

    C. 方格取数(1) Time Limit: 5000ms Memory Limit: 32768KB 64-bit integer IO format: %I64d      Java class ...

随机推荐

  1. pandas中.value_counts()的用法

    原文链接:https://www.jianshu.com/p/f773b4b82c66 value_counts()是一种查看表格某列中有多少个不同值的快捷方法,并计算每个不同值有在该列中有多少重复值 ...

  2. 20191127 Spring Boot官方文档学习(4.14-4.17)

    4.14.使用RestTemplate调用REST服务 如果需要从应用程序调用远程REST服务,则可以使用Spring Framework的RestTemplate类.由于RestTemplate实例 ...

  3. Oracle 修改数据文件路径的方法

      1. 关闭数据库,然后启动至mount状态 sqlplus / as sysdba shutdown immediate startup mount 2. 修改物理文件: 我这边将: c:\cwd ...

  4. uboot常用命令

    一. 常用简单命令 1.1. help命令 a. 帮助查看其他命令的使用方法,类型linux下man b. 示例: help help x210 # help help help [command . ...

  5. electron实现qq快捷登录!

    之前本来想不写这个功能的,结果客户死活要qq登录! 实在没办法就写了,顺便写个文章!在写之前有两个问题:1: 打开qq授权页面点击页面中的链接会又打开一个页面! .....2: 授权之后是否成功很难去 ...

  6. LeetCode-239-剑指offer-滑动窗口的最大值-队列与栈-python

    给定一个数组和滑动窗口的大小,找出所有滑动窗口里数值的最大值.例如,如果输入数组{2,3,4,2,6,2,5,1}及滑动窗口的大小3,那么一共存在6个滑动窗口,他们的最大值分别为{4,4,6,6,6, ...

  7. spring security OAuth2.0之客户端Client的实现

    项目代码:https://github.com/hankuikuide/microservice-spring-security-oauth2 网上多数的项目客户端都是采用纯js写,或用postman ...

  8. UITextField 文本框 只能输入数字 且保留2位小数 实现

    http://blog.sina.com.cn/s/blog_aa7579f601015xvx.html #pragma mark - #pragma mark UITextField - (BOOL ...

  9. php手动实现ip2long和long2ip

    php手动实现ip2long和long2ip /** * 测试 */ public function testipAction() { $ip = '10.58.101.175'; echo ip2l ...

  10. vue项目1-pizza点餐系统11-设计menu页面

    菜单的页面设计是基于bootstrap实现的,主要用到的是table标签,其中获取data数据用到遍历. <template> <div class=""> ...