BZOJ 2069: [POI2004]ZAW(Dijkstra + 二进制拆分)
题意
给定一个有 \(N\) 个点 \(M\) 条边的无向图, 每条无向边 最多只能经过一次 .
对于边 \((u, v)\) , 从 \(u\) 到 \(v\) 的代价为 \(a\) , 从 \(v\) 到 \(u\) 的代价为 \(b\) , 其中 \(a\) 和 \(b\) 不一定相等.
求一个包含 \(1\) 号点的有向环, 使得环上代价之和最小.
\(N \le 3 \times 10^4 , M \le 10^5 , 1 \le a, b \le 10^4\) , 保证没有重边和自环 .
题解
考虑一条包含 \(1\) 的有向环, 一定是 \(1 \to x \to \cdots \to y \to 1\) 这样子. \((x \not = y)\)
那么我们可以考虑一个很显然的暴力:枚举 \(x, y\) 然后做最短路, 但是这样显然太慢了.
但是这里的最短路是可以 “并行” 地求的. 也就是说, 如果给定两个不相交的点集 \(\mathcal{A}, \mathcal{B}\) , 那么我们可以用一次最短路的时间求出所
有点对 \((x, y)\) 满足 \(x \in \mathcal{A}, y \in \mathcal{B}\) 的最短路的最小值.
具体地, 我们把 \(1\) 号点拆成两个点, 一个作为源点只连向 \(\mathcal{A}\) 中的点, 另一个作为汇点只被 \(\mathcal{B}\) 中的点连向.
然后这里需要一个二进制拆分的技巧: 在与 \(1\) 相邻的那些点中,每次考虑它们二进制下的第 \(k\) 位, 将这一位为 \(0\) 的放入 \(A\) , 为 \(1\) 的放入 \(\mathcal{B}\) , 那么只需 \(\log N\) 次, 我们便可以考虑到每一对.
以上全部摘自 __debug 的 PPT 。
这个最短路可以用 Spfa
求,但实测要比 Dijkstra
慢几倍。。为了求稳,还是用 Dijkstra
吧233
所以最后的复杂度就是 \(\mathcal O((N + M) \log^2 N)\)
总结
对于一类考虑点对贡献,并且很多对可以并行求,且重复计算没有影响的问题,能考虑二进制拆分技巧,对于每一位分别考虑。
将整体分成两组,最后计算贡献,能大幅度降低时间复杂度。
新套路 get
代码
特别好写233
#include <bits/stdc++.h>
#define For(i, l, r) for(register int i = (l), i##end = (int)(r); i <= i##end; ++i)
#define Fordown(i, r, l) for(register int i = (r), i##end = (int)(l); i >= i##end; --i)
#define Set(a, v) memset(a, v, sizeof(a))
#define Cpy(a, b) memcpy(a, b, sizeof(a))
#define debug(x) cout << #x << ": " << x << endl
#define DEBUG(...) fprintf(stderr, __VA_ARGS__)
#define fir first
#define sec second
#define mp make_pair
using namespace std;
inline bool chkmin(int &a, int b) {return b < a ? a = b, 1 : 0;}
inline bool chkmax(int &a, int b) {return b > a ? a = b, 1 : 0;}
inline int read() {
int x = 0, fh = 1; char ch = getchar();
for (; !isdigit(ch); ch = getchar()) if (ch == '-') fh = -1;
for (; isdigit(ch); ch = getchar()) x = (x << 1) + (x << 3) + (ch ^ 48);
return x * fh;
}
void File() {
#ifdef zjp_shadow
freopen ("2069.in", "r", stdin);
freopen ("2069.out", "w", stdout);
#endif
}
const int N = 5010, M = 10100 * 2, inf = 0x7f7f7f7f;
int Head[N], Next[M], to[M], val[M], e = 0;
inline void add_edge(int u, int v, int w) { to[++ e] = v; Next[e] = Head[u]; Head[u] = e; val[e] = w; }
priority_queue<pair<int, int> > P;
int dis[N], S, T; bitset<N> vis;
int Dijkstra() {
Set(dis, inf); dis[S] = 0; P.push(mp(0, S)); vis.reset();
while (!P.empty()) {
int u = P.top().sec; P.pop(); if (vis[u]) continue ; vis[u] = true;
for (int i = Head[u]; i; i = Next[i]) {
int v = to[i]; if (chkmin(dis[v], dis[u] + val[i])) P.push(mp(- dis[v], v));
}
}
return dis[T];
}
struct Edge { int u, v, a, b; } lt[M];
int n, m;
void Rebuild(int cur, int flag) {
Set(Head, 0); e = 0; S = 1; T = n + 1;
For (i, 1, m) {
int u = lt[i].u, v = lt[i].v, a = lt[i].a, b = lt[i].b;
if (u == 1) {
if ((v & cur) ^ flag) add_edge(S, v, a);
else add_edge(v, T, b);
} else add_edge(u, v, a), add_edge(v, u, b);
}
}
int main () {
File();
n = read(); m = read();
For (i, 1, m) {
int u = read(), v = read(), a = read(), b = read();
if (u > v) swap(u, v), swap(a, b);
lt[i] = (Edge) {u, v, a, b};
}
int ans = inf;
for (int bit = 1; bit <= n; bit <<= 1) {
Rebuild(bit, 0), chkmin(ans, Dijkstra());
Rebuild(bit, bit), chkmin(ans, Dijkstra());
}
printf ("%d\n", ans);
return 0;
}
BZOJ 2069: [POI2004]ZAW(Dijkstra + 二进制拆分)的更多相关文章
- BZOJ 2069 POI2004 ZAW 堆优化Dijkstra
题目大意:给定一张无向图.每条边从两个方向走各有一个权值,求从点1往出走至少一步之后回到点1且不经过一条边多次的最短路 显然我们须要从点1出发走到某个和点1相邻的点上,然后沿最短路走到还有一个和点1相 ...
- BZOJ.2069.[POI2004]ZAW(最短路Dijkstra 按位划分)
题目链接 \(Description\) 给定一张带权图(边是双向的,但不同方向长度不同).求从1出发,至少经过除1外的一个点,再回到1的最短路.点和边不能重复经过. \(n\leq5000,m\le ...
- 【刷题】BZOJ 2069 [POI2004]ZAW
Description 在Byte山的山脚下有一个洞穴入口. 这个洞穴由复杂的洞室经过隧道连接构成. 洞穴的入口是一条笔直通向"前面洞口"的道路. 隧道互相都不交叉(他们只在洞室相 ...
- 2069: [POI2004]ZAW
2069: [POI2004]ZAW 链接 题意: 给定一张带权图(边是双向的,但不同方向长度不同).求从1出发,至少经过除1外的一个点,再回到1的最短路.点和边不能重复经过. n≤5000,m≤10 ...
- bzoj 2096 [POI2004]ZAW——二进制枚举
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2069 可以把直接相连的点分成 从1点出的一部分 和 走向1点的一部分.多起点最短路就和 ...
- BZOJ2069: [POI2004]ZAW
2069: [POI2004]ZAW Time Limit: 10 Sec Memory Limit: 64 MBSubmit: 303 Solved: 138[Submit][Status][D ...
- 【最短路】【dijkstra】【二进制拆分】hdu6166 Senior Pan
题意:给你一张带权有向图,问你某个点集中,两两结点之间的最短路的最小值是多少. 其实就是dijkstra,只不过往堆里塞边的时候,要注意塞进去它是从集合中的哪个起始点过来的,然后在更新某个点的答案的时 ...
- hdu 2844 coins(多重背包 二进制拆分法)
Problem Description Whuacmers use coins.They have coins of value A1,A2,A3...An Silverland dollar. On ...
- HDU 4135:Co-prime(容斥+二进制拆分)
Co-prime Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) Total S ...
随机推荐
- 用友云开放平台之API网关
本文介绍选择API网关应考虑的几方面内容,API网关在微服务框架中的作用,API网关如何选型,用友云开放平台的API网关可以做什么. 随着互联网的快速发展,当前已步入移动互联.物联网时代.企业内部系统 ...
- Booth乘法
先看一个例子,结合疑问看算法. 1.已知X=+0.0011 Y=-0.1011 求[XY]补 解:[x]补 =0.0011 , [-x]补 =1.1101,[y]补 =1.0101 部分积 ...
- PAT L2-009 抢红包
https://pintia.cn/problem-sets/994805046380707840/problems/994805066890854400 没有人没抢过红包吧…… 这里给出N个人之间互 ...
- use redis instance in docker hub
redis - Docker Hubhttps://hub.docker.com/_/redis
- CentOS的el5, el6, el7代表什么
https://www.cnblogs.com/EasonJim/p/9051851.html el: enterprise linux?
- nginx之快速查找配置文件
nginx的配置放在nginx.conf文件中,一般我们可以使用以下命令查看服务器中存在的nginx.conf文件. locate nginx.conf /usr/local/nginx/conf ...
- css横线中间放图片或者文字
效果图: 先贴代码 HTML: <div class="forshow middle"> <div class="flex"></ ...
- Laravel设置软删除及其恢复系列操作
软删除及其相关实现 在模型类中要使用SoftDeletestrait并设置$date属性数组 <?php namespace App\Models; use Illuminate\Databas ...
- js发布订阅模式实现
//可以用于无相关页面或组件的事件.数据传递,减少在onShow中的业务,降低代码耦合 let events = {} /**订阅**/ function on(name, self, callbac ...
- Python创建virtualenv(虚拟环境)方法
本文目录 一 前言 二 通过virtualenv软件创建 三 在pycharm下创建 新建项目 四 已有项目使用和创建虚拟环境 五 参数说明 一 前言 需求: --公司之有一台服务器 ...