2017清华大学THUSSAT附加学科测试数学(二测)
$\cos^5\dfrac{\pi}{9}+\cos^5\dfrac{5\pi}{9}+\cos^5\dfrac{7\pi}{9}$ 的值为_____
A.$\frac{15}{32}$

B.$\frac{15}{16}$

C.$\frac{8}{15}$

D.$\frac{16}{15}$

解答:注意到$\cos3\theta=4\cos^3\theta-3\cos\theta,\cos3\theta=\dfrac{1}{2}$的三个根为$\dfrac{\pi}{9},\dfrac{5\pi}{9},\dfrac{7\pi}{9}$故$\cos\dfrac{\pi}{9},\cos\dfrac{5\pi}{9},\cos\dfrac{7\pi}{9}$ 为$4\cos^3\theta-3\cos\theta-\dfrac{1}{2}=0$的三个根,即$\cos^3\theta=\dfrac{3}{4}\cos\theta+\dfrac{1}{8}$;
故$\cos^5\theta=\cos^2\theta\left(\dfrac{3}{4}\cos\theta+\dfrac{1}{8}\right)=\dfrac{3}{4}\cos^3\theta+\dfrac{1}{8}\cos^2\theta=\dfrac{9}{16}\cos\theta+\dfrac{3}{32}+\dfrac{1}{8}\cos^2\theta$
故$\cos^5\dfrac{\pi}{9}+\cos^5\dfrac{5\pi}{9}+\cos^5\dfrac{7\pi}{9}$

$=\dfrac{1}{8}(\cos\dfrac{\pi}{9}+\cos\dfrac{5\pi}{9}+\cos\dfrac{7\pi}{9})^2-\dfrac{1}{4}(\cos\dfrac{\pi}{9}\cdot\cos\dfrac{5\pi}{9}+\cos\dfrac{5\pi}{9}\cdot\cos\dfrac{7\pi}{9}+\cos\dfrac{7\pi}{9}\cdot\cos\dfrac{\pi}{9})+\dfrac{9}{32}$
$=\dfrac{1}{8}\cdot0^2-\dfrac{1}{4}\cdot(-\dfrac{3}{4})+\dfrac{9}{32}=\dfrac{15}{32}$

注:也可以用正余弦的快速降幂公式去做

注:一般的$\cos^n\dfrac{\pi}{9}+\cos^n\dfrac{3\pi}{9}+\cos^n\dfrac{5\pi}{9}+\cos^n\dfrac{7\pi}{9}=\dfrac{1}{2}$这里 n 为奇数.

MT【300】余弦的三倍角公式的更多相关文章

  1. MT【89】三棱锥的体积公式

    评:已知对棱的距离以及此对棱边长,夹角就可以求出该三棱锥的体积.这把三棱锥的放到平行六面体里的做法是非常常见的.

  2. MT【195】三次函数

    (2016年清华大学自主招生暨领军计划试题) 已知$x,y,z\in \mathbf{R}$,满足$x+y+z=1,x^2+y^2+z^2=1$,则下列结论正确的有( ) A.$xyz$的最大值为$0 ...

  3. MT【83】三个等号

    分析:此类三个等式的一般做法先记为$t$,则有如下做法:

  4. MT【12】三点坐标求面积

    $L_1,L_2$是O发出的两条射线,C是一个常数,一条动直线$l$分别与$L_1,L_2$交于A,B两点.$S_{\Delta ABC}=C$,求A,B的中点D的轨迹方程.(2012北大自主招生) ...

  5. MT【177】三个乘积和

    对任意 2 个 1,2,3,4,5,6 的全排列 $(a_1,a_2,a_3,a_4,a_5,a_6)$ 和 $(b_1,b_2,b_3,b_4,b_5,b_6)$,求$\displaystyle S ...

  6. MT【116】三个点动起来

    评:当若干个变量时抓住主变量,立体几何问题平面化.

  7. 文本离散表示(三):TF-IDF结合n-gram进行关键词提取和文本相似度分析

    这是文本离散表示的第二篇实战文章,要做的是运用TF-IDF算法结合n-gram,求几篇文档的TF-IDF矩阵,然后提取出各篇文档的关键词,并计算各篇文档之间的余弦距离,分析其相似度. TF-IDF与n ...

  8. 2018-2019-2 20175217 实验三《敏捷开发与XP实践》实验报告

    一.实验报告封面 课程:Java程序设计 班级:1752班 姓名:吴一凡 学号:20175217 指导教师:娄嘉鹏 实验日期:2019年4月25日 实验时间:--- 实验序号:实验三 实验名称:敏捷开 ...

  9. MT【16】证明无理数(2)

    证明:$sin10^0$为无理数. 分析:此处用$sin$的三倍角公式,结合多项式有有理根必须满足的系数之间的关系可以证明. 评:证明$sin9^0$为无理数就不那么简单.思路:先利用$sin54^0 ...

随机推荐

  1. IOS - UTF-8转码问题

    2016.07.06 21:45* 字数 61 阅读 921评论 0喜欢 2 IOS中提供的转码. [utf8str stringByAddingPercentEscapesUsingEncoding ...

  2. JavaScript中的各种X,Y,Width,Height

    在JavaScript DOM编程中,会接触很多很多很多关于浏览器的宽高,屏幕的宽高,元素的各种宽高,以及鼠标的坐标等,常常让人搞混.索性就写篇博客整理一下. case 1:鼠标的坐标 获取鼠标的坐标 ...

  3. 分布式Tomcat session会话Sticky Sessions问题

    分布式session会话Sticky Sessions - tomcat_baby的专栏 - CSDN博客https://blog.csdn.net/tomcat_baby/article/detai ...

  4. JEECG DataGridColumn dictionary使用问题

    <t:dgCol title="线索所属人"  field="ownerId"  query="true"  queryMode=&q ...

  5. 小程序wepy.js框架总结

    wepy.js借鉴了Vue的语法风格和功能特性,对官方提供的框架进行了封装,更贴近于MVVM架构模式,让开发者更加容易上手,增加开发效率.(脏数据处理--是否有标识.是否有响应) 前端开发的对组件化开 ...

  6. 同一个机器 安装多个版本Chrome浏览器的方法

    1. Chrome 现在安装直接没有任何提示 就直接安装了 而且自动式 高版本覆盖低版本安装 不给你任何选择版本的机会. 2. 但是chrome 的安装是基于用户的 所以 同一个机器 使用不同的用户 ...

  7. Codeforces 1154E Two Teams

    题目链接:http://codeforces.com/problemset/problem/1154/E 题目大意: 有n个队员,编号1~n,每个人的能力各自对应1~n中的一个数,每个人的能力都不相同 ...

  8. idea中 maven打包时时报错User setting file does not exist C:\Users\lenevo\.m2\setting.xml,

    第一种错误 :idea中 maven打包时时报错User setting file does not exist C:\Users\lenevo\.m2\setting.xml, 解决方案如下:将ma ...

  9. 【git】git add 添加错文件 撤销

     git add 添加 多余文件 这样的错误是由于, 有的时候 可能 git add . (空格+ 点) 表示当前目录所有文件,不小心就会提交其他文件 git add 如果添加了错误的文件的话 撤销操 ...

  10. 使用synchronized 实现ReentrantLock(美团面试题目)

    刚看到这个题目的时候无从下手,因为觉得synchronized和lock在加锁的方式上有很大不同,比如,看看正常情况下synchronized时如何加锁的. 方式一: public synchroni ...