【AGC005F】Many Easy Problems FFT 容斥原理
题目大意
给你一棵树,有\(n\)个点。还给你了一个整数\(k\)。
设\(S\)为树上某些点的集合,定义\(f(S)\)为最小的包含\(S\)的联通子图的大小。
\(n\)个点选\(k\)个点一共有\(\binom{n}{k}\)中方案,请你求出所有方案的\(f(S)\)的和\(\mod 924844033\)。
出题人觉得这样就太简单了,他决定让你求出所有\(k=1\ldots n\)的答案。
\(n\leq 200000\)
题解
似乎对于每个\(k\)没办法快速求出答案。
我们考虑一个点对所有答案的贡献。
一个点\(x\)在这个联通子图内当且经当这\(k\)个点不在以\(x\)为根时\(x\)的子树内。
那么贡献为\(\binom{n}{k}-\sum \binom{a_i}{k}\),其中\(a_i\)为以\(x\)为根时各个子树的大小。可以发现,计算总的贡献时每条边两端的子树大小都会被计算一次。\(\binom{n}{k}\)会被计算\(n\)次。
设
\begin{cases}
n~~~~~~~~~~(i=n)\\
num_i~~~(i\neq n)
\end{cases}
\]
其中\(num_i\)为大小为\(i\)的子树的个数
ans_k&=\sum_{i\geq k} b_i\binom{i}{k}\\
&=\sum_{i\geq k} b_i\frac{i!}{(i-k)!k!}\\
&=\frac 1{k!}\sum_{i\geq k}b_ii!\times \frac{1}{(i-k)!}
\end{align}
\]
这可以转化成卷积的形式
c_{n-i}&=num_ii!\\
d_{i}&=\frac{1}{i!}\\
a_i&=\sum_{j+k=i}c_id_i\\
ans_i&=\frac{a_{n-i}}{i!}
\end{align}
\]
时间复杂度:\(O(n\log n)\)
代码
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cstdlib>
#include<ctime>
#include<utility>
#include<list>
using namespace std;
typedef long long ll;
typedef unsigned long long ull;
typedef pair<int,int> pii;
const ll p=924844033;
const ll g=5;
ll fp(ll a,ll b)
{
ll s=1;
while(b)
{
if(b&1)
s=s*a%p;
a=a*a%p;
b>>=1;
}
return s;
}
namespace ntt
{
ll w1[1000010];
ll w2[1000010];
int rev[1000010];
int n;
void init()
{
#ifdef DEBUG
n=16;
#else
n=524288;
#endif
int i;
for(i=1;i<=n;i<<=1)
{
w1[i]=fp(g,(p-1)/i);
w2[i]=fp(w1[i],p-2);
}
rev[0]=0;
for(i=1;i<n;i++)
rev[i]=(rev[i>>1]>>1)|(i&1?n>>1:0);
}
void ntt(ll *a,int t)
{
int i,j,k;
ll u,v,w,wn;
for(i=0;i<n;i++)
if(rev[i]<i)
swap(a[i],a[rev[i]]);
for(i=2;i<=n;i<<=1)
{
wn=(t==1?w1[i]:w2[i]);
for(j=0;j<n;j+=i)
{
w=1;
for(k=j;k<j+i/2;k++)
{
u=a[k];
v=a[k+i/2]*w%p;
a[k]=(u+v)%p;
a[k+i/2]=(u-v)%p;
w=w*wn%p;
}
}
}
if(t==-1)
{
ll inv=fp(n,p-2);
for(i=0;i<n;i++)
a[i]=a[i]*inv%p;
}
}
};
ll b[1000010];
ll c[1000010];
ll a[1000010];
ll inv[1000010];
ll fac[1000010];
ll ifac[1000010];
int s[1000010];
int n;
list<int> l[200010];
ll num[1000010];
void dfs(int x,int fa)
{
s[x]=1;
for(auto v:l[x])
if(v!=fa)
{
dfs(v,x);
s[x]+=s[v];
num[s[v]]--;
num[n-s[v]]--;
}
}
int main()
{
#ifdef DEBUG
freopen("b.in","r",stdin);
freopen("b.out","w",stdout);
#endif
scanf("%d",&n);
int i,x,y;
for(i=1;i<=n-1;i++)
{
scanf("%d%d",&x,&y);
l[x].push_back(y);
l[y].push_back(x);
}
inv[0]=inv[1]=fac[0]=fac[1]=ifac[0]=ifac[1]=1;
for(i=2;i<=n;i++)
{
inv[i]=-(p/i)*inv[p%i]%p;
fac[i]=fac[i-1]*i%p;
ifac[i]=ifac[i-1]*inv[i]%p;
}
dfs(1,0);
num[n]=n;
for(i=0;i<=n;i++)
b[i]=num[n-i]*fac[n-i]%p;
for(i=0;i<=n;i++)
c[i]=ifac[i];
ntt::init();
ntt::ntt(b,1);
ntt::ntt(c,1);
for(i=0;i<ntt::n;i++)
a[i]=b[i]*c[i]%p;
ntt::ntt(a,-1);
for(i=1;i<=n;i++)
{
ll ans=a[n-i]*ifac[i]%p;
ans=(ans+p)%p;
printf("%lld\n",ans);
}
return 0;
}
【AGC005F】Many Easy Problems FFT 容斥原理的更多相关文章
- AGC005F Many Easy Problems(NTT)
先只考虑求某个f(k).考虑转换为计算每条边的贡献,也即该边被所选连通块包含的方案数.再考虑转换为计算每条边不被包含的方案数.这仅当所选点都在该边的同一侧.于是可得f(k)=C(n,k)+ΣC(n,k ...
- 【AtCoder】AGC005F - Many Easy Problems
题解 我们把一个点的贡献转化为一条边的贡献,因为边的数量是点的数量-1,最后再加上选点方案数\(\binom{n}{k}\)即可 一条边的贡献是\(\binom{n}{k} - \binom{a}{k ...
- [AGC005F] Many Easy Problems
link 题意简述 给定一颗无根树,对于所有大小为 $i$ 的点集,求出能够包含它的所有联通块之和,定义为 $f_i$ ,答案对 $924844033$ 取模. $n\leq 2\times 10^5 ...
- 解题:AT2064 Many Easy Problems&EXNR #1 T3 两开花
题面 两道题比较像,放在一起写了,后者可以看成前者的加强版 (sto ztb orz) 先看AT那道题 考虑计算每个点的贡献,用容斥计算:每个点没有贡献当且仅当选的所有点都在以他为根时的一个子节点的子 ...
- Codeforces 913D - Too Easy Problems
913D - Too Easy Problems 思路:二分check k 代码: #include<bits/stdc++.h> using namespace std; #define ...
- 【AtCoder】AGC005 F - Many Easy Problems 排列组合+NTT
[题目]F - Many Easy Problems [题意]给定n个点的树,定义S为大小为k的点集,则f(S)为最小的包含点集S的连通块大小,求k=1~n时的所有点集f(S)的和取模92484403 ...
- 【CodeForces】913 D. Too Easy Problems
[题目]D. Too Easy Problems [题意]给定n个问题和总时限T,每个问题给定时间ti和限制ai,当解决的问题数k<=ai时问题有效,求在时限T内选择一些问题解决的最大有效问题数 ...
- AtcoderGrandContest 005 F. Many Easy Problems
$ >AtcoderGrandContest \space 005 F. Many Easy Problems<$ 题目大意 : 有一棵大小为 \(n\) 的树,对于每一个 \(k \i ...
- 【bzoj3771】Triple FFT+容斥原理
题目描述 樵夫的每一把斧头都有一个价值,不同斧头的价值不同.总损失就是丢掉的斧头价值和. 他想对于每个可能的总损失,计算有几种可能的方案. 注意:如果水神拿走了两把斧头a和b,(a,b)和(b,a)视 ...
随机推荐
- Web 应用 WEB框架 HTTP协议 初识Django
----------------------------财富存在于人的思想里,你没找到路,不等于没有路,你想知道将来要得到什么,你必须知道现在应该先做什么和先放弃什么! [web 应用] web应用 ...
- elasticsearch(6.2.3)安装Head插件
一.安装elasticsearch,参照:https://www.cnblogs.com/dyh004/p/8872443.html 二.安装nodejs,参照:https://www.runoob. ...
- AtCoder Beginner Contest 053
D - Card Eater Time limit : 2sec / Memory limit : 256MB Score : 400 points Problem Statement Snuke h ...
- ImportError: DLL load failed: 找不到指定的模块。
这里用的anacoda,报错是找不到DLL,可能是该DLL的环境变量没配置,配置系统环境变量: 重启一下pycharm,OK.
- Maven安装与环境配置(Windows)
1.下载安装包 在Maven官网下载最新版的安装包:http://maven.apache.org/download.cgi 2.解压安装包 3.配置Maven环境变量 配置M2_HOME环境变量,指 ...
- Django 中的Form、ModelForm
一.ModelForm 源码 class ModelForm(BaseModelForm, metaclass=ModelFormMetaclass): pass def modelform_fact ...
- 【学习总结】 小白CS成长之路
2017-9-3:入坑. 理想:敲着代码唱着歌. 现实:骨感. Step 1: 认识CS: CS大体可以分成以下几个大领域:硬件.系统.软件.网络.计算理论.计算方法. 硬 件 ---- 数字电路.集 ...
- 社交CRM SCRM
社交CRM - 国际版 Binghttps://cn.bing.com/search?FORM=U227DF&PC=U227&q=%E7%A4%BE%E4%BA%A4CRM 社交CRM ...
- Eclipse lombok java
Stablehttps://projectlombok.org/features/all Lombok介绍及使用方法 - holten - 博客园http://www.cnblogs.com/holt ...
- C# DataTable详解
添加引用 using System.Data; 创建表 //创建一个空表 DataTable dt = new DataTable(); //创建一个名为"Table_New"的空 ...