果然SA比SAM+map快。

首先这是SAM裸题,然而SA求本质不同子串个数也很容易。考虑倒着建SA,这样没错加一个字符就变成加一个后缀,其他后缀都不变,那么i的答案就是只考虑前i个后缀的答案。搞个双向链表,每次删一个后缀并RMQ更新答案。

(SAM+map复杂度可能是错的,但是我不清楚)

#include<algorithm>
#include<cstdio>
#define lb lower_bound
using namespace std;
const int N=1e5+5;
typedef int arr[N];
arr sa,r,f[17],c,v,s,t,p,q;
typedef long long ll;
ll b,z[N];
void pre(int*s,int n){
for(int i=0;i<n;++i)
++c[s[i]];
for(int i=1;i<n;++i)
c[i]+=c[i-1];
for(int i=n-1;~i;--i)
sa[--c[s[i]]]=i;
int m=0;
for(int i=1;i<n;++i)
r[sa[i]]=s[sa[i]]!=s[sa[i-1]]?++m:m;
for(int j=1;;j<<=1){
if(++m==n)break;
for(int i=0;i<j;++i)
v[i]=n-j+i;
for(int i=0;i<m;++i)
c[i]=0;
for(int i=0,k=j;i<n;++i){
if(sa[i]>=j)
v[k++]=sa[i]-j;
++c[r[i]];
}
for(int i=1;i<m;++i)
c[i]+=c[i-1];
for(int i=n-1;~i;--i)
sa[--c[r[v[i]]]]=v[i],v[i]=r[i];
m=r[sa[0]]=0;
for(int i=1;i<n;++i)
r[sa[i]]=v[sa[i]]!=v[sa[i-1]]||v[sa[i]+j]!=v[sa[i-1]+j]?++m:m;
}
}
int ask(int i,int j){
int k=__lg(j-i+1);
return min(f[k][i],f[k][j-(1<<k)+1]);
}
struct buf{
char z[9<<17],*s;
buf():s(z){
z[fread(z,1,sizeof z,stdin)]=0;
}
operator int(){
int x=0;
while(*s<48)++s;
while(*s>32)
x=x*10+*s++-48;
return x;
}
}it;
int main(){
int n=it;
for(int i=n-1;~i;--i)
s[i]=t[i]=it;
sort(t,t+n);
for(int i=0;i<n;++i)
s[i]=lb(t,t+n,s[i])-t+1;
pre(s,n+1);
for(int i=0,j=0;i<n;++i){
if(j)--j;
while(s[i+j]==s[sa[r[i]-1]+j])++j;
f[0][r[i]]=j;
}
for(int j=1;n>>j;++j)
for(int i=0;i+(1<<j)-1<=n;++i)
f[j][i]=min(f[j-1][i],f[j-1][i+(1<<j-1)]);
for(int i=1;i<=n;++i)
b+=n-sa[i]-f[0][i];
for(int i=n;i>1;--i)
p[i]=i-1;
for(int i=1;i<n;++i)
q[i]=i+1;
for(int i=0;i<n;++i){
int j=r[i],k=0;
if(p[j])k=max(k,ask(p[j]+1,j));
if(q[j])k=max(k,ask(j+1,q[j]));
z[i]=b,b-=n-i-k;
p[q[j]]=p[j];
q[p[j]]=q[j];
}
for(int i=n-1;~i;--i)
printf("%lld\n",z[i]);
}

BZOJ4516: [Sdoi2016]生成魔咒的更多相关文章

  1. BZOJ4516: [Sdoi2016]生成魔咒 后缀自动机

    #include<iostream> #include<cstdio> #include<cstring> #include<queue> #inclu ...

  2. [bzoj4516][Sdoi2016]生成魔咒——后缀自动机

    Brief Description 魔咒串由许多魔咒字符组成,魔咒字符可以用数字表示.例如可以将魔咒字符 1.2 拼凑起来形成一个魔咒串 [1,2]. 一个魔咒串 S 的非空字串被称为魔咒串 S 的生 ...

  3. BZOJ4516 [Sdoi2016]生成魔咒 【后缀自动机】

    题目 魔咒串由许多魔咒字符组成,魔咒字符可以用数字表示.例如可以将魔咒字符 1.2 拼凑起来形成一个魔咒串 [1,2]. 一个魔咒串 S 的非空字串被称为魔咒串 S 的生成魔咒. 例如 S=[1,2, ...

  4. BZOJ4516 SDOI2016生成魔咒(后缀数组+平衡树)

    一个字符串本质不同的子串数量显然是总子串数减去所有height值.如果一个个往里加字符的话,每次都会改动所有后缀完全没法做.但发现如果从后往前加的话,每次只会添加一个后缀.于是我们把字符串倒过来,每次 ...

  5. bzoj4516: [Sdoi2016]生成魔咒 sam

    题意:每次插入一个数字,查询本质不同的子串有多少个 题解:sam,数字很大,ch数组用map来存,每次ins之后查询一下新建点表示多少个本质不同的子串(l[np]-l[fa[np]]) /****** ...

  6. 2018.12.23 bzoj4516: [Sdoi2016]生成魔咒(后缀自动机)

    传送门 samsamsam入门题. 题意简述:给出一个串让你依次插入字符,求每次插入字符之后不同子串的数量. 显然每次的变化量只跟新出现的nnn个后缀有关系,那么显然就是maxlenp−maxlenl ...

  7. bzoj千题计划283:bzoj4516: [Sdoi2016]生成魔咒(后缀数组)

    http://www.lydsy.com/JudgeOnline/problem.php?id=4516 考虑在后面新加一个字母产生的影响 假设是第i个 如果不考虑重复,那么会增加i个不同的字符串 考 ...

  8. BZOJ4516: [Sdoi2016]生成魔咒(后缀数组 set RMQ)

    题意 题目链接 Sol 毒瘤SDOI 终于有一道我会做的题啦qwq 首先,本质不同的子串的个数 $ = \frac{n(n + 1)}{2} - \sum height[i]$ 把原串翻转过来,每次就 ...

  9. BZOJ4516 SDOI2016生成魔咒(后缀自动机)

    本质不同子串数量等于所有点的len-parent树上父亲的len的和.可以直接维护. #include<iostream> #include<cstdio> #include& ...

随机推荐

  1. 实现一个基于 SharePoint 2013 的 Timecard 应用(下)

    现在,基于 Timecard 数据来一点儿数据分析. 应用需求 对于 Timecard,分析下面 2 个方面: 对于单个项目,分析其中每个成员的工时占比,以此了解工作量分配,为组间人员调度提供参考. ...

  2. Android 多个listview的实现

    正好,今天项目中需要,先写了个demo,给大家参考参考. 先上图,需要的自己,看看具体的代码实现步骤 大概说一下实现步骤: 1.布局中先用 scrollview 包裹 LinearLayout < ...

  3. android MD5加密

    public class MD5Uutils {    //MD5加密,32位    public static String MD5(String str) {        MessageDige ...

  4. GitHub + VSTS 开源代码双向同步

    GitHub已经是全球开源代码的大本营了,通过以下统计你可以看到仅仅javascript在github就有超过32万个活动的repo.很多开发人员都会把自己的一部分代码分享到github上进行开源,一 ...

  5. 读《C#高级编程》第1章问题

    读<C#高级编程>第1章 .Net机构体系笔记 网红的话:爸爸说我将来会是一个牛逼的程序员,因为我有一个梦,虽然脑壳笨但是做事情很能坚持. 本章主要是了解.Net的结构,都是一些概念,并没 ...

  6. 分布式一致性算法--Paxos

    Paxos算法是莱斯利·兰伯特(Leslie Lamport)1990年提出的一种基于消息传递的一致性算法.Paxos算法解决的问题是一个分布式系统如何就某个值(决议)达成一致.在工程实践意义上来说, ...

  7. java的会话管理:Cookie和Session

    java的会话管理:Cookie和Session 1.什么是会话 此处的是指客户端(浏览器)和服务端之间的数据传输.例如用户登录,购物车等 会话管理就是管理浏览器客户端和服务端之间会话过程产生的会话数 ...

  8. Winform进程、线程

    进程: 一般来说,一个程序就是一个进程,不过也有一个程序需要多个进程支持的情况. 进程要使用的类是:Process它在命名空间:System.Diagnostics; 1.静态方法Start(); 2 ...

  9. 前端之float的几种清除浮动方式

    前端之float的几种清除浮动方式 本节内容 1.float清除方式1 2.float清除方式2 3.float清除方式3 4.float清除方式4 1.float清除方式1 <!DOCTYPE ...

  10. js中typeOf用法

    JS中的变量是松散类型(即弱类型)的,可以用来保存任何类型的数据. typeof 可以用来检测给定变量的数据类型,可能的返回值:1. 'undefined' --- 这个值未定义: 2. 'boole ...