Description

给出 \(n\) 个 \(\leq m\) 且不同的数 \(a_1,\dots,a_n\),现在要求从这 \(n\) 个数中选出最少的数字,满足这 \(n\) 个数字都可以由选出的数字组合成(就是做一个完全背包能做出来),并且任意组合出来的数字,只要不超过 \(m\),就必须让这个数字在给出的 \(n\) 个数中。问是否可行,如果可行,请求出最少选多少数字。 \(n,m\leq 10^6\)。

Sol

先判断是否可行,再看哪些数可以省略。

求出 \(a\) 数组的生成函数,即构造多项式 \(F(x)=\sum f_i\cdot x^i\)。\(f_i\) 为 \(1\) 当且仅当 \(a\) 数组中出现 \(a_*=i\)

然后求出 \(G(x)=F^2(i)=\sum g_i\cdot x^i\)。如果 \(g_i>0\) 那就说明给出的这 \(n\) 个数可以合成 \(i\) 。

于是就得到了从原来的 \(n\) 个数中拿出 \(0\sim 2\) 个的结果。

然而最多拿出 \(m\) 个。

所以还要继续,用快速幂求得 \(f^m\)。如果多项式快速幂的话,复杂度 \(O(n\log^2n)\),用多项式ln+多项式exp求的话,复杂度 \(O(n\log n)\)。但是多项式exp常数太大了!

事实上是有只做 \(1\) 次FFT的方法的。

显然如果 \(f_i>0\) 的话,\(g_i>0\)。

那我们只要保证满足 \(f_i=0,g_i>0,i\leq m\) 的 \(i\) 不存在就好了。

如果第一轮不存在这些不合法的,那接下来肯定也不存在。感性理解一下这就相当于构成了一个封闭的集合。

所以只做 \(1\) 次FFT就行了。

然后考虑一下哪些数可以省略

如果一个数 \(i\) 可以被其他数表示出来,那 \(g_i\) 一定 \(>2\)。所以 \(g_i=2\) 的 \(i\) 就是必选的。

时间复杂度 \(O(n\log n)\)。

Sol

#pragma GCC optimize(2)
#include<bits/stdc++.h>
using std::min;
using std::max;
using std::swap;
using std::vector;
typedef double db;
typedef long long ll;
#define pb(A) push_back(A)
#define pii std::pair<int,int>
#define all(A) A.begin(),A.end()
#define mp(A,B) std::make_pair(A,B)
const int N=4e6+5;
const int mod=998244353; int lim,rev[N];
int n,m,a[N],b[N]; int ksm(int a,int b=mod-2,int ans=1){
while(b){
if(b&1) ans=1ll*ans*a%mod;
a=1ll*a*a%mod;b>>=1;
} return ans;
} int getint(){
int X=0,w=0;char ch=getchar();
while(!isdigit(ch))w|=ch=='-',ch=getchar();
while( isdigit(ch))X=X*10+ch-48,ch=getchar();
if(w) return -X;return X;
} void ntt(int *f,int g){
for(int i=1;i<lim;i++) if(i<rev[i]) swap(f[i],f[rev[i]]);
for(int mid=1;mid<lim;mid<<=1){
int tmp=ksm(g,(mod-1)/(mid<<1));
for(int R=mid<<1,j=0;j<lim;j+=R){
int w=1;
for(int k=0;k<mid;k++,w=1ll*w*tmp%mod){
int x=f[j+k],y=1ll*w*f[j+k+mid]%mod;
f[j+k]=(x+y)%mod,f[j+k+mid]=(mod+x-y)%mod;
}
}
} if(g>3)
for(int in=ksm(lim),i=0;i<lim;i++) f[i]=1ll*f[i]*in%mod;
} signed main(){
n=getint(),m=getint();
for(int i=1;i<=n;i++){
int x=getint();
a[x]=b[x]=1;
}
lim=1;while(lim<=m+m) lim<<=1;
for(int i=1;i<lim;i++) rev[i]=(rev[i>>1]>>1)|(i&1?lim>>1:0);
a[0]=1; ntt(a,3);
for(int i=0;i<lim;i++) a[i]=1ll*a[i]*a[i]%mod;
ntt(a,(mod+1)/3);
for(int i=1;i<=m;i++)
if(a[i] and !b[i]) return printf("NO"),0;
puts("YES"); int tot=0;
for(int i=1;i<=m;i++)
if(a[i]==2) tot++;
printf("%d\n",tot);
for(int i=1;i<=m;i++)
if(a[i]==2) printf("%d ",i);
return 0;
}

[CF286E] Ladies' shop的更多相关文章

  1. CF286E Ladies' Shop FFT

    题目链接 读完题后,我们发现如下性质: 在合法且和不超过 $m$ 的情况下,如果 $a_{i}$ 出现,则 $a_{i}$ 的倍数也必出现. 所以如果合法,只要对所有数两两结合一次就能得到所有 $a_ ...

  2. codeforces 286 E. Ladies' Shop (FFT)

    E. Ladies' Shop time limit per test 8 seconds memory limit per test 256 megabytes input standard inp ...

  3. codeforces 286E Ladies' Shop

    题目大意:n个小于等于m的数,现在你需要在[1,m]中选择若干个数,使得选出的数能组成的所有数正好与n个数相同,给出最少要选多少个数. 题目分析: 结论一:选择的若干个数一定在n个数中. 证明:否则的 ...

  4. CodeForces 286E Ladies' Shop 多项式 FFT

    原文链接http://www.cnblogs.com/zhouzhendong/p/8781889.html 题目传送门 - CodeForces 286E 题意 首先,给你$n$个数(并告诉你$m$ ...

  5. Ladies' Shop

    题意: 有 $n$ 个包,设计最少的物品体积(可重集),使得 1. 对于任意一个总体积不超过给定 $m$ 的物体集合有其体积和 恰好等于一个包的容量. 2.对于每一个包,存在一个物品集合能恰好装满它. ...

  6. Codeforces 286E - Ladies' Shop(FFT)

    Codeforces 题面传送门 & 洛谷题面传送门 好久没刷过 FFT/NTT 的题了,写篇题解罢( 首先考虑什么样的集合 \(T\) 符合条件.我们考察一个 \(x\in S\),根据题意 ...

  7. 多项式 之 快速傅里叶变换(FFT)/数论变换(NTT)/常用套路【入门】

    原文链接https://www.cnblogs.com/zhouzhendong/p/Fast-Fourier-Transform.html 多项式 之 快速傅里叶变换(FFT)/数论变换(NTT)/ ...

  8. Codeforces Round #176 (Div. 1 + Div. 2)

    A. IQ Test 模拟. B. Pipeline 贪心. C. Lucky Permutation 每4个数构成一个循环. 当n为偶数时,n=4k有解:当n为奇数时,n=4k+1有解. D. Sh ...

  9. codeforces 632+ E. Thief in a Shop

    E. Thief in a Shop time limit per test 5 seconds memory limit per test 512 megabytes input standard ...

随机推荐

  1. 浅谈Spring中的IOC容器

    一.IOC.DI基本概念 IoC(Inversion of Control)控制反转指的是把对象的创建,初始化,销毁等工作交给容器来做.由容器控制对象的生命周期(传统方式中是由我们程序员主动创建对象. ...

  2. PowerShell工作流学习-6-向脚本工作流添加检查点

    关键点: a)检查点是工作流当前状态的快照,其中包括变量的当前值以及在该点生成的任何输出,这些信息保存在磁盘. b)检查点数据保存在托管工作流会话的计算机的硬盘上的用户配置文件中. c)当工作流通用参 ...

  3. 欣赏<沉默的大多数>——王小波

    君特·格拉斯在<铁皮鼓>里,写了一个不肯长大的人.小奥斯卡发现周围的世界太过荒诞,就暗下决心要永远做小孩子.在冥冥之中,有一种力量成全了他的决心,所以他就成了个侏儒.这个故事太过神奇,但很 ...

  4. IE兼容问题 动态生成的节点IE浏览器无法触发

    ie下click()不能操作文档中没有的节点,所以你可以在click()前添加下面的语句 document.body.appendChild( input ); input.style.display ...

  5. B树/[oracle]connect BY语句

    读大神的书,出现很多没有见过的函数和便捷操作,特此记录 connect by 之前没有接触过,为了学习这个语句,先了解一下B树数据类型是最好的方法. [本人摘自以下博客] https://www.cn ...

  6. navicat连接mysql出现2059错误

    最近在学习django的时候需要用到数据库,于是便下载了navicat准备和mysql配套使用,但是在连接的时候确出现了如下问题: 网上查询过后,发现这个错误出现的原因是在mysql8之前的版本中加密 ...

  7. 【pycharm】pycharm修改文件名快捷键

    shift+F6 修改文件名 --------------------------------------------------

  8. 闵可夫斯基和(Mincowsky sum)

    一.概述 官方定义:两个图形A,B的闵可夫斯基和C={a+b|a∈A,b∈B}通俗一点:从原点向图形A内部的每一个点做向量,将图形B沿每个向量移动,所有的最终位置的并便是闵可夫斯基和(具有交换律) 例 ...

  9. angular-指令

    ng-app 作用域 ng-init 声明 module 模块 ng-model 双向绑定 ng-bind 绑定 angular是一个MVC框架:即 M------------------module ...

  10. 疑难杂症:Java中Scanner连续获取int和String型发生错误.

    使用Scanner类获取输入,连续获取int类型和String类型数据时候,发生错误. Scanner sc = new Scanner(System.in); System.out.println( ...