目前在研究Automated Machine Learning,其中有一个子领域是实现网络超参数自动化搜索,而常见的搜索方法有Grid Search、Random Search以及贝叶斯优化搜索。前两者很好理解,这里不会详细介绍。本文将主要解释什么是体统(沉迷延禧攻略2333),不对应该解释到底什么是贝叶斯优化。

I Grid Search & Random Search

我们都知道神经网络训练是由许多超参数决定的,例如网络深度,学习率,卷积核大小等等。所以为了找到一个最好的超参数组合,最直观的的想法就是Grid Search,其实也就是穷举搜索,示意图如下。

但是我们都知道机器学习训练模型是一个非常耗时的过程,而且现如今随着网络越来越复杂,超参数也越来越多,以如今计算力而言要想将每种可能的超参数组合都实验一遍(即Grid Search)明显不现实,所以一般就是事先限定若干种可能,但是这样搜索仍然不高效。

所以为了提高搜索效率,人们提出随机搜索,示意图如下。虽然随机搜索得到的结果互相之间差异较大,但是实验证明随机搜索的确比网格搜索效果要好。

II Bayesian Optimization

假设一组超参数组合是\(X={x_1,x_2,...,x_n}\)(\(x_n\)表示某一个超参数的值),而这组超参数与最后我们需要优化的损失函数存在一个函数关系,我们假设是\(f(X)\)。

而目前机器学习其实是一个黑盒子(black box),即我们只知道input和output,所以上面的函数\(f\)很难确定。所以我们需要将注意力转移到一个我们可以解决的函数上去,下面开始正式介绍贝叶斯优化。

假设我们有一个函数\(f:\cal{X}→\Bbb{R}\),我们需要在\(X\subseteq\cal{X}\)内找到

\(x^*=\underset{x\in X}{\operatorname{argmin}}f(x) \tag{1}\)

当\(f\)是凸函数且定义域\(X\)也是凸的时候,我们可以通过已被广泛研究的凸优化来处理,但是\(f\)并不一定是凸的,而且在机器学习中\(f\)通常是expensive black-box function,即计算一次需要花费大量资源。那么贝叶斯优化是如何处理这一问题的呢?

1. 详细算法

Sequential model-based optimization (SMBO) 是贝叶斯优化的最简形式,其算法思路如下:

下面详细介绍一下上图中的算法:

1. Input:

  • \(f\): 就是那个所谓的黑盒子
  • \(\cal{X}\):是输入数据,例如图像、语音等。
  • \(S\):是Acquisition Function(采集函数),这个函数的作用是用来选择公式(1)中的\(x\),后面会详细介绍这个函数。
  • \(\cal{M}\):是基于输入数据假设的模型,即已知的输入数据\(x\)都是在这个模型上的,可以用来假设的模型有很多种,例如随机森林,Tree Parzen Estimators(想要了解这两种的可以阅读参考文献[1])等,但是本文主要介绍高斯模型

2. InitSamples(f,x)→D

这一步骤就是初始化获取数据集\(\cal{D}={(X_1,Y_1),...,(X_n,Y_n)}\),其中\(Y_i=f(X_i)\),这些都是已知的。

3. 循环选参数\(T\)次

因为每次选出参数\(x\)后都需要计算\(f(x)\),而正如前面介绍的没计算一次函数\(f\),都会消耗大量资源,所以一般需要固定选参次数(或者是函数评估次数)

  • \(p(y|x,D)←FITMODEL(M,D)\)

首先我们预先假设了模型\(\cal{M}\)服从高斯分布,且已知了数据集\(\cal{D}\),所以可以通过计算得出具体的模型具体函数表示。假设下图中的绿色实现就是基于数据集\(\cal{D}\)经过计算后的服从高斯分布模型。可以看到Each additional band of green is another half standard deviation on the output distribution.

那么高斯分布是如何计算的呢?

因为我们已经假设\(f\)~\(GP(μ,K)\)。 (GP:高斯过程,μ:均值 K:协方差kernel,)。所以预测也是服从正态分布的,即有\(p(y|x,D)=\cal{N}(y|\hat{μ},\hat{σ}^2)\)

  • \(x_i←\underset{x\in X}{\operatorname{argmax}}S(X,p(y|X,D))\)

现在已经将假设的模型计算出来了,那么下一步我们需要基于假设模型的基础上选择满足公式(1)的参数了,也就是选择\(X\),那么如何选择呢?这就涉及到了Acquisition Function,为了让文章篇幅更易阅读,想了解Acquisition Function移步到文末。

  • \(y_i←f(x_i)\)

既然参数选出来了,那么当然就是要计算咯。例如我们通过上述步骤已经选出了一组超参数\(x_i\),那么我们下一步就是将超参数带入网络中去进行训练,最后得到输出\(y_i\)。这一步骤虽然expensive,但是没办法还是得走啊。

  • \(D←D \bigcup{(x_i,y_i)}\)

更新数据集。

2. Acquisition Function

Acquisition Function的选择可以有很多种,下面将分别介绍不同的AC function。

1) Probability of improvement

假设\(f'=min \, f\),这个\(f'\)表示目前已知的\(f\)的最小值。

然后定义utility function如下:
\[
u(x) =
\begin{cases}
o, & \text{if $f(x)>f'$} \\
1, & \text{if $f(x)≤f'$ }
\end{cases}
\]

其实也可以把上面的\(u(x)\)理解成一个reward函数,如果f(x)不大于f'就有奖励,反之没有。

probability of improvement acquisition function定义为the expected utility as a function of x:

\[
\begin{align}
a_{PI}(x)=E[u(x)|x,D] & = \int_{-∞}^{f'}\cal{N}(f;μ(x),K(x,x))df \notag{} \\
& = \cal{\Phi}(f';μ(x),K(x,x)) \notag{}
\end{align}
\]

之后只需要求出\(a(x)\)的最大值即可求出基于高斯分布的满足要求的\(x\)。

2) Excepted improvement

上面的AC function有个缺点就是找到的\(x\)可能是局部最优点,所以有了Excepted improvement。\(f'\)的定义和上面一样,即\(f'=min \, f\)。utility function定义如下:

\[u(x)=max(0,f'-f(x))\]

因为我们最初的目的是找到使得f(x)最小的x,所以这个utility function的含义很好理解,即接下来找到的\(f(x)\)比已知最小的\(f'\)越小越好,然后选出小的程度最大的那个\(f(x)\)和\(f'\)之间的差距的绝对值作为奖励,如果没有更小的那么奖励则为0.

AC function定义如下:

\[
\begin{align}
a_{EI}(x)=E[u(x)|x,D] & = \int_{-∞}^{f'}(f'-f)\cal{N}(f;μ(x),K(x,x))df \notag{} \\
& = (f'-μ(x))\cal{\Phi}(f';μ(x),K(x,x)) \, + \, K(x,x)\cal{N}(f';μ(x),K(x,x)) \notag{}
\end{align}
\]

通过计算使得\(a_{EI}\)值最大的点即为最优点。

上式中有两个组成部分。要使得上式值最大则需要同时优化左右两个部分:

  • 左边需要尽可能的减少\(μ(x)\)
  • 右边需要尽可能的增大方差(或协方差)\(K(x,x)\)

但是二者并不同能是满足,所以这是一个exploitation-exploration tradeoff。

3) Entropy search

4) Upper confidence bound

Reference

MARSGGBO♥原创







2018-10-28

贝叶斯优化(Bayesian Optimization)深入理解的更多相关文章

  1. 贝叶斯优化 Bayesian Optimization

    贝叶斯优化 Bayesian Optimization 2018年07月02日 22:28:06 余生最年轻 阅读数 4821更多 分类专栏: 机器学习   版权声明:本文为博主原创文章,遵循CC 4 ...

  2. 贝叶斯优化(Bayesian Optimization)只需要看这一篇就够了,算法到python实现

    贝叶斯优化 (BayesianOptimization) 1 问题提出 神经网咯是有许多超参数决定的,例如网络深度,学习率,正则等等.如何寻找最好的超参数组合,是一个老人靠经验,新人靠运气的任务. 穷 ...

  3. 基于贝叶斯优化的超参数tuning

    https://arimo.com/data-science/2016/bayesian-optimization-hyperparameter-tuning/ 贝叶斯优化:使用高斯过程作为代理函数, ...

  4. DeepMind提出新型超参数最优化方法:性能超越手动调参和贝叶斯优化

    DeepMind提出新型超参数最优化方法:性能超越手动调参和贝叶斯优化 2017年11月29日 06:40:37 机器之心V 阅读数 2183   版权声明:本文为博主原创文章,遵循CC 4.0 BY ...

  5. 朴素贝叶斯(Naive Bayesian)

    简介 Naive Bayesian算法 也叫朴素贝叶斯算法(或者称为傻瓜式贝叶斯分类) 朴素(傻瓜):特征条件独立假设 贝叶斯:基于贝叶斯定理 这个算法确实十分朴素(傻瓜),属于监督学习,它是一个常用 ...

  6. 调参贝叶斯优化(BayesianOptimization)

    from sklearn.datasets import make_classification from sklearn.model_selection import cross_val_score ...

  7. (ZT)算法杂货铺——分类算法之贝叶斯网络(Bayesian networks)

    https://www.cnblogs.com/leoo2sk/archive/2010/09/18/bayes-network.html 2.1.摘要 在上一篇文章中我们讨论了朴素贝叶斯分类.朴素贝 ...

  8. 条件独立(conditional independence) 结合贝叶斯网络(Bayesian network) 概率有向图 (PRML8.2总结)

    本文会利用到上篇,博客的分解定理,需要的可以查找上篇博客 D-separation对任何用有向图表示的概率模型都成立,无论随机变量是离散还是连续,还是两者的结合. 部分图为手写,由于本人字很丑,望见谅 ...

  9. 条件独立(conditional independence) 结合贝叶斯网络(Bayesian network) 概率有向图 (PRML8.2总结)

    转:http://www.cnblogs.com/Dzhouqi/p/3204481.html本文会利用到上篇,博客的分解定理,需要的可以查找上篇博客 D-separation对任何用有向图表示的概率 ...

随机推荐

  1. cookie猜数字游戏(下)------------以及cookie使用的不安全之处

    1.通过cookie可以解决上篇中多个用户对数据的修改,每个COOKIE保存不同用户的数据 <?php if(empty($_COOKIE['num'])||empty($_GET['num'] ...

  2. rest_framework学习之路

    目录 RESTful理解 APIView 序列化组件 视图组件 解析器 认证组件 权限组件 频率组件 分页器 响应器 URL控制器 版本控制器

  3. go logs

    安装导入 go get github.com/astaxie/beego/logs import "github.com/astaxie/beego/logs" 使用 packag ...

  4. 【C#】C#格式化文件大小

    /// <summary> /// 格式化文件大小的C#方法 /// </summary> /// <param name="filesize"> ...

  5. JDBC-Batch 批量执行

    JDBC 批处理 SQL 语句 首先在 jdbc 的 url 中加上 rewriteBatchedStatements=true,只有开启了这个 Mysql 才会执行批处理,否则还是一条一条执行 St ...

  6. python css盒子型 浮动

    ########################总结############### 块级标签能够嵌套某些块级标签和内敛标签 内敛标签不能块级标签,只能嵌套内敛标签 嵌套就是: <div> ...

  7. python mysql索引 优化神器explain 慢查询

    ##############总结########## 数据库中专门帮助用户快速找到数据的一种数据结构 类似于字典的目录的索引 索引的作用:约束和加速查找 工作原理: b+树形结构 最上层是树根,中间是 ...

  8. 谈谈关于PHP连接数据库的两种方法(PDO&Mysqli)

    前言:在我们之前学习sql语句的时候都是停留在黑窗口的,怎样才能让mysql与程序代码发生联系呢?此时PDO和Mysqli应运而生,为了解决这个问题 (一)开启其中(pdo或者mysqli)的php扩 ...

  9. HDU - 6315(2018 Multi-University Training Contest 2) Naive Operations (线段树区间操作)

    http://acm.hdu.edu.cn/showproblem.php?pid=6315 题意 a数组初始全为0,b数组为1-n的一个排列.q次操作,一种操作add给a[l...r]加1,另一种操 ...

  10. HDU 1024(新最大子序列和 DP)

    题意是要在一段数列中求 m 段互不重合的子数列的最大和. 动态规划,用数组 num[ ] 存储所给数列,建二维数组 dp[ ][ ] , dp[ i ][ j ] 表示当选择了第 j 个数字( num ...