非常好的树形dp

首先,有个很显然的状态:记状态f[i][j]表示以i为根节点的子树中选了j个叶节点作战,那么很显然有转移:f[i][j1+j2]=f[i<<1][j1]+f[i<<1|1][j2]

所以我们只需爆搜一发状态,然后每次更新即可

但是有个问题:当我们搜到最底层的叶节点时,由于他的贡献与祖先节点有关,所以无法直接更新

但是我们发现,n的数据范围非常小,而且一个叶节点产生的贡献只会与他上面一条链的状态有关,所以我们在dfs的时候暴力记录每个点的状态,然后搜到叶节点的时候直接更新即可。

注意一下二叉树的性质:如果设根节点的高度为h,那么这个二叉树会有(1<<(h-1))+1个节点,这里不要算错了

剩下就是更新了

#include <cstdio>
#include <cmath>
#include <cstring>
#include <cstdlib>
#include <iostream>
#include <algorithm>
#include <queue>
#include <stack>
#define rt1 rt<<1
#define rt2 (rt<<1)|1
using namespace std;
int v1[][],v2[][],f[][];
int n,m;
bool col[];
void dfs(int rt,int h)
{
for(int i=;i<=((<<h));i++)
{
f[rt][i]=;
}
if(!h)
{
for(int i=;i<=n;i++)
{
if(!col[i])
{
f[rt][]+=v2[rt][i];
}else
{
f[rt][]+=v1[rt][i];
}
}
return;
}
col[h]=;
dfs(rt1,h-);
dfs(rt2,h-);
for(int i=;i<=(<<(h-));i++)
{
for(int j=;j<=(<<(h-));j++)
{
f[rt][i+j]=max(f[rt][i+j],f[rt1][i]+f[rt2][j]);
}
}
col[h]=;
dfs(rt1,h-);
dfs(rt2,h-);
for(int i=;i<=(<<(h-));i++)
{
for(int j=;j<=(<<(h-));j++)
{
f[rt][i+j]=max(f[rt][i+j],f[rt1][i]+f[rt2][j]);
}
}
}
int main()
{
scanf("%d%d",&n,&m);
for(int i=;i<(<<(n-));i++)
{
for(int j=;j<n;j++)
{
scanf("%d",&v1[i+(<<(n-))][j]);
}
}
for(int i=;i<(<<((n-)));i++)
{
for(int j=;j<n;j++)
{
scanf("%d",&v2[i+(<<(n-))][j]);
}
}
dfs(,n-);
int ans=;
for(int i=;i<=m;i++)
{
ans=max(ans,f[][i]);
}
printf("%d\n",ans);
return ;
}

bzoj 4007的更多相关文章

  1. 【BZOJ 4007】[JLOI2015]战争调度 DP+搜索+状压

    又是一道思路清新的小清晰. 观察题目,如果我们确定了平民或者贵族的任意一方,我们便可以贪心的求出另一方,至此20分:我们发现层数十分小,那么我们就也是状压层数,用lca转移,线性dp,至此50分(好像 ...

  2. bzoj 4007 树形dp

    题目大意 脸哥最近来到了一个神奇的王国,王国里的公民每个公民有两个下属或者没有下属,这种关系刚好组成一个 n 层的完全二叉树.公民 i 的下属是 2 * i 和 2 * i +1.最下层的公民即叶子节 ...

  3. BZOJ 2127: happiness [最小割]

    2127: happiness Time Limit: 51 Sec  Memory Limit: 259 MBSubmit: 1815  Solved: 878[Submit][Status][Di ...

  4. BZOJ 3275: Number

    3275: Number Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 874  Solved: 371[Submit][Status][Discus ...

  5. BZOJ 2879: [Noi2012]美食节

    2879: [Noi2012]美食节 Time Limit: 10 Sec  Memory Limit: 512 MBSubmit: 1834  Solved: 969[Submit][Status] ...

  6. bzoj 4610 Ceiling Functi

    bzoj 4610 Ceiling Functi Description bzoj上的描述有问题 给出\(n\)个长度为\(k\)的数列,将每个数列构成一个二叉搜索树,问有多少颗形态不同的树. Inp ...

  7. BZOJ 题目整理

    bzoj 500题纪念 总结一发题目吧,挑几道题整理一下,(方便拖板子) 1039:每条线段与前一条线段之间的长度的比例和夹角不会因平移.旋转.放缩而改变,所以将每条轨迹改为比例和夹角的序列,复制一份 ...

  8. 【sdoi2013】森林 BZOJ 3123

    Input 第一行包含一个正整数testcase,表示当前测试数据的测试点编号.保证1≤testcase≤20. 第二行包含三个整数N,M,T,分别表示节点数.初始边数.操作数.第三行包含N个非负整数 ...

  9. 【清华集训】楼房重建 BZOJ 2957

    Description 小A的楼房外有一大片施工工地,工地上有N栋待建的楼房.每天,这片工地上的房子拆了又建.建了又拆.他经常无聊地看着窗外发呆,数自己能够看到多少栋房子. 为了简化问题,我们考虑这些 ...

随机推荐

  1. ssm框架所需jar包整理及各jar包的作用

    以下是我目前新搭建的ssm项目的pom.xml 之后如果需要其他的话再加 <?xml version="1.0" encoding="UTF-8"?> ...

  2. Shiro入门 - 通过ini文件进行认证

    导入依赖 <dependency> <groupId>org.apache.shiro</groupId> <artifactId>shiro-core ...

  3. CF1100F Ivan and Burgers

    题目地址:CF1100F Ivan and Burgers 一道有难度的线性基题,看了题解才会做 预处理两个数组: \(p_{r,i}\) 表示满足下列条件的最大的 \(l\) :线性基第 \(i\) ...

  4. 国产 WEB UI 框架 (收费)-- Quick UI,Mini UI

    国产 WEB UI 框架 (收费)-- Quick UI,Mini UI : http://www.uileader.com/ http://www.miniui.com/

  5. 巧用这19条MySQL优化【转】

    1.EXPLAIN 做MySQL优化,我们要善用EXPLAIN查看SQL执行计划. 下面来个简单的示例,标注(1.2.3.4.5)我们要重点关注的数据: type列,连接类型.一个好的SQL语句至少要 ...

  6. jQuery.extend()参数

    非原创,转载仅供学习 在处理插件参数的接收上,通常使用jQuery的extend方法.extend方法传递单个对象的情况下,这个对象会合并到jQuery身上,而当用extend方法传递一个以上的参数时 ...

  7. VS2013中如何解决error C4996: 'fopen'问题

    今天编写控制台应用程序时出现如下错误 error C4996: 'fopen': This function or variable may be unsafe. Consider using fop ...

  8. python实现求最大公约数与最小公倍数

    记录python实现最大公约数&最小公位数两种算法 概念 最大公约数:指两个或多个整数共有约数中最大的一个 最小公倍数:两个或多个整数公有的倍数叫做它们的公倍数,其中除0以外最小的一个公倍数就 ...

  9. python学习第6天

    id is ==  代码块 代码块的缓存机制 小数据池(不同代码块的缓存机制) 小数据池(驻留机制)总结 数据类型之间的转换 int bool str 三者转化是可以的. bool 可以与所有的数据类 ...

  10. Selenium+Java自动化之如何优雅绕过验证码

    前言: 验证码问题对于每个ui自动化的同学而言,相信都是个蛋疼的问题,对于验证码的处理我个人不提倡破解,不要去想破解方法,这个验证码本来就是为了防止别人自动化登录的.如果你们公司的验证码很容易被你破解 ...