链接:https://www.nowcoder.com/questionTerminal/d83721575bd4418eae76c916483493de
来源:牛客网

广场上站着一支队伍,她们是来自全国各地的扭秧歌代表队,现在有她们的身高数据,请你帮忙找出身高依次递增的子序列。 例如队伍的身高数据是(1、7、3、5、9、4、8),其中依次递增的子序列有(1、7),(1、3、5、9),(1、3、4、8)等,其中最长的长度为4。

输入描述:
输入包含多组数据,每组数据第一行包含一个正整数n(1≤n≤1000)。

紧接着第二行包含n个正整数m(1≤n≤10000),代表队伍中每位队员的身高。
输出描述:
对应每一组数据,输出最长递增子序列的长度。
示例1

输入

7
1 7 3 5 9 4 8
6
1 3 5 2 4 6

输出

4
4
大佬代码:
 #include <iostream>
using namespace std;
int main(){
    int N;
    while(cin >> N){
        int  a[], dp[] = {}, m=;
    for (int i = ; i <= N; i++) cin >> a[i];
    for (int i = ; i <= N; i++)
        for (int j = ; j < i; j++)
            if (a[j] < a[i])
                dp[i] = max(dp[i], dp[j] + ), m = dp[i] > m ? dp[i] : m;
    cout << m + << endl;
    }
    return ;
}

注意:这dp题不是很难,但在掌握后必须时刻记住有些题虽然通过这题改编,不过坑很多;

比如:

Nowadays, a kind of chess game called “Super Jumping! Jumping! Jumping!” is very popular in HDU. Maybe you are a good boy, and know little about this game, so I introduce it to you now.

The game can be played by two or more than two players. It consists of a chessboard(棋盘)and some chessmen(棋子), and all chessmen are marked by a positive integer or “start” or “end”. The player starts from start-point and must jumps into end-point finally. In the course of jumping, the player will visit the chessmen in the path, but everyone must jumps from one chessman to another absolutely bigger (you can assume start-point is a minimum and end-point is a maximum.). And all players cannot go backwards. One jumping can go from a chessman to next, also can go across many chessmen, and even you can straightly get to end-point from start-point. Of course you get zero point in this situation. A player is a winner if and only if he can get a bigger score according to his jumping solution. Note that your score comes from the sum of value on the chessmen in you jumping path. 
Your task is to output the maximum value according to the given chessmen list. 

InputInput contains multiple test cases. Each test case is described in a line as follow:
N value_1 value_2 …value_N 
It is guarantied that N is not more than 1000 and all value_i are in the range of 32-int. 
A test case starting with 0 terminates the input and this test case is not to be processed. 
OutputFor each case, print the maximum according to rules, and one line one case. 
Sample Input

3 1 3 2
4 1 2 3 4
4 3 3 2 1
0

Sample Output

4
10
3
 #include<iostream>
#include<algorithm>
#include<climits> using namespace std; int main()
{
int t;
while (cin >> t && t != )
{
int a[] = { }, MAX = INT_MIN, ko, b[] = { };
for (int i = ; i < t; i++)
{
cin >> a[i];
}
for (int i = ; i < t; i++)
b[i] = INT_MIN;
b[] = a[];
for (int i = ; i < t; i++)
{
for (int j = ; j < i; j++)
{
if (a[j] < a[i])
b[i] = max(b[i], b[j] + a[i]);
}
b[i] = max(b[i], a[i]);
}
for (int i = ; i < t; i++)
{
if (b[i] > MAX)
MAX = b[i];
}
cout << MAX << endl;
}
return ;
}

特别注意:有些数循环时没有进入第二层的循环,不过也应该放在b数组中进行比较,选取较大的数,相当于最长序列中题中给标记数组初始化为1;

最长上升子序列(dp)的更多相关文章

  1. POJ-2533最长上升子序列(DP+二分)(优化版)

    Longest Ordered Subsequence Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 41944   Acc ...

  2. LCS最长公共子序列~dp学习~4

    题目连接:http://acm.hdu.edu.cn/showproblem.php?pid=1513 Palindrome Time Limit: 4000/2000 MS (Java/Others ...

  3. Longest Ordered Subsequence POJ - 2533 最长上升子序列dp

    题意:最长上升子序列nlogn写法 #include<iostream> #include<cstdio> #include<cstring> #include&l ...

  4. POJ 1458 最长公共子序列(dp)

    POJ 1458 最长公共子序列 题目大意:给出两个字符串,求出这样的一 个最长的公共子序列的长度:子序列 中的每个字符都能在两个原串中找到, 而且每个字符的先后顺序和原串中的 先后顺序一致. Sam ...

  5. 【BZOJ2423】[HAOI2010]最长公共子序列 DP

    [BZOJ2423][HAOI2010]最长公共子序列 Description 字符序列的子序列是指从给定字符序列中随意地(不一定连续)去掉若干个字符(可能一个也不去掉)后所形成的字符序列.令给定的字 ...

  6. hdu 1159 Common Subsequence(最长公共子序列 DP)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1159 Common Subsequence Time Limit: 2000/1000 MS (Jav ...

  7. 最长公共子序列 DP

    class Solution: def LCS(self,A,B): if not A or not B: #边界处理 return 0 dp = [[0 for _ in range(len(B)+ ...

  8. 38-最长公共子序列(dp)

    最长公共子序列 https://www.nowcoder.com/practice/c996bbb77dd447d681ec6907ccfb488a?tpId=49&&tqId=293 ...

  9. 洛谷-P1439 【模板】最长公共子序列 (DP,离散化)

    题意:给两个长度为\(n\)的全排列,求他们的LCS 题解:这题给的数据范围到\(10^5\),用\(O(n^2)\)的LCS模板过不了,但由于给的是两个全排列,他们所含的元素都是一样的,所以,我们以 ...

  10. bzoj3304[Shoi2005]带限制的最长公共子序列 DP

    题意:给出三个序列,求出前两个的公共子序列,且包含第三个序列,要求长度最长. 这道题目怎么做呢,f[i][j]表示a串1-i,b串1-j的最长,g[i][j]表示a串i-n,b串j-m最长, 那么只需 ...

随机推荐

  1. steps/train_mono.sh

    <<单音素HMM的训练流程图.vsdx>> 定义拓扑结构.参数初始化 $ gmm-init-mono --shared-phones=$lang/phones/sets.int ...

  2. VMWare14 安装Mac OS系统(图解)

    ★ 背景 瞅了瞅自己干瘪的钱包,没忍心入手期待已久的 macPro,只好在虚拟机里玩一下 mac好了,等以后钱包傲气的时候再来个真实的. 安装环境: windows10 VMWare14.2 一.准备 ...

  3. IE9浏览器打开开发者工具代码正常执行,反之报错

    1.can i use console  IE9开发者工具打开时支持console对象,否则报错. 2.由于出现错误 80020101 而导致此项操作无法完成 测试代码 <!DOCTYPE ht ...

  4. 生成器的throw和close方法

    def gen_func(): try: yield 1 except Exception as e: pass yield 2 yield 3 yield 4 yield 5 return &quo ...

  5. box-shadow阴影覆盖问题

    “商品库”栏下方阴影被覆盖,解决方法:给“商品库”盒子加“position:relative”

  6. Linux常用命令(三)查看当前计算机各方面信息

    1.查看cpu: top 2.查看当前linux版本:name -a 查看当前运行的内核版本:cat /pro/version 查看发行版本信息:cat /etc/issue 查看上面所有信息:lsb ...

  7. python第六天函数,定义、调用、不带参函数、带参函数等

    在python定义函数需要用到的关键字是 def  xxxx():,这个关键字就是 defined 的缩写.具体看实例: >>> def hello(): print("你 ...

  8. thinkpad e系列 装win7过程

    电脑买回来时是win8系统,但是卡顿的厉害,装成win7,win8装win7流程还是比较复杂,后来又装成xp,现在又改成win7,记录一下装win7 的过程 我是用光盘安装的系统 第一步:进入boss ...

  9. 【VMware vSphere】Veeam备份

    前言 刚刚整理自己的Onenote笔记,发现有一篇笔记没有整理到博客上面来.因为没有许可证书,所以最后也没有成功,但是还是写在这里吧,万一哪儿天有了许可证书就又可以做试验了~ Veeam Backup ...

  10. html5 file 上传文件

    <body> <header> <h2>Pure HTML5 file upload</h2> </header> <div clas ...