第二十九节,目标检测算法之R-CNN算法详解
Girshick, Ross, et al. “Rich feature hierarchies for accurate object detection and semantic segmentation.” Proceedings of the IEEE conference on computer vision and pattern recognition. 2014.
R-CNN的全称是Region-CNN,它可以说是第一个成功将深度学习应用到目标检测上的算法。后面要讲到的Fast R-CNN、Faster R-CNN全部都是建立在R-CNN基础上的。
传统的目标检测算法大多数以图像识别为基础。一般可以在图片上使用穷举法或者滑动窗口选出所有物体可能出现的区域框,对这些区域框提取特征并进行使用图像识别分类方法,得到所有分类成功的区域后,通过非极大值抑制输出结果。
一 R-CNN思路
R-CNN遵循传统目标检测的思路,同样采用提取框,对每个框提取特征、图像分类、非极大值抑制四个步骤进行目标检测、只不过进行了部分改进。
- 经典的目标检测算法使用滑动窗法依次判断所有可能的区域。而这里预先提取一系列较可能是物体的候选区域,之后仅在这些候选区域上提取特征,进行判断,大大减少了计算量。
- 将传统的特征(如SIFT,HOG特征等)换成了深度卷积网络提取特征。
在训练时使用两个数据库:
一个较大的识别库(ImageNet ILSVC 2012):标定每张图片中物体的类别。一千万图像,1000类。
一个较小的检测库(PASCAL VOC 2007):标定每张图片中,物体的类别和位置。一万图像,20类。
使用识别库进行预训练,而后用检测库调优参数。最后在检测库上评测。
二 算法简述
数据集采用pascal VOC,这个数据集的object一共有20个类别。首先用selective search方法在每张图像上选取约2000个region proposal,region proposal就是object有可能出现的位置。然后根据这些region proposal构造训练和测试样本,注意这些region proposal的大小不一,另外样本的类别是21个(包括了背景)。
然后是预训练,即在ImageNet数据集下,用AlexNet进行训练。然后再在我们的数据集上fine-tuning,网络结构不变(除了最后一层输出由1000改为21),输入是前面的region proposal进行尺寸变换到一个统一尺寸227*227,保留f7的输出特征2000*4096维。
针对每个类别(一共20类)训练一个SVM分类器,以f7层的输出作为输入,训练SVM的权重4096*20维,所以测试时候会得到2000*20的得分输出,且测试的时候会对这个得分输出做NMS(non-maximun suppression),简单讲就是去掉重复框的过程。同时针对每个类别(一共20类)训练一个回归器,输入是pool5的特征和每个样本对的坐标即长宽。
三 训练步骤
R-CNN的训练可以分成以下步骤:
- 准备region proposal。对于训练集中的所有图像,采用selective search方式来获取,最后每个图像得到2000个region proposal。
- 准备正负样本。如果某个region proposal和当前图像上的所有ground truth(标记)重叠面积最大的那个的IOU大于等于0.5,则该region proposal作为这个ground truth类别的正样本,否则作为负样本。另外正样本还包括了Ground Truth。因为VOC一共包含20个类别,所以这里region proposal的类别为20+1=21类,1表示背景。简单说下IOU的概念,IOU是计算矩形框A、B的重合度的公式:IOU=(A∩B)/(A∪B),重合度越大,说明二者越相近。
- 预训练。这一步主要是因为检测问题中带标签的样本数据量比较少,难以进行大规模训练。采用的是Krizhevsky在2012年的著名网络AlexNet来学习特征,包含5个卷积层和2个全连接层,在Caffe框架下利用ILSVRC 2012的数据集进行预训练,其实就是利用大数据集训练一个分类器,这个ILSVRC 2012数据集就是著名的ImageNet比赛的数据集,也是彩色图像分类。
- fine-tuning。将2中得到的样本进行尺寸变换,使得大小一致,这是由于2中得到的region proposal大小不一,所以需要将region proposal变形成227*227(如何变形参考R-CNN论文详解)。本文中对所有不管什么样大小和横纵比的region proposal都直接拉伸到固定尺寸。然后作为3中预训练好的网络的输入,继续训练网络,继续训练其实就是迁移学习。另外由于ILSVRC 2012是一个1000类的数据集,而本文的数据集是21类(包括20个VOC类别和一个背景类别),迁移的时候要做修改,将最后一个全连接层的输出由1000改成21,其他结构不变。训练结束后保存f7的特征。
- 针对每个类别训练一个SVM的二分类器。输入是f7的特征,f7的输出维度是2000*4096,输出的是是否属于该类别,训练结果是得到SVM的权重矩阵W,W的维度是4096*20。这里负样本的选定和前面的有所不同,将IOU的阈值从0.5改成0.3,即IOU<0.3的是负样本,正样本是Ground Truth。IOU的阈值选择和前面fine-tuning不一样,主要是因为:前面fine-tuning需要大量的样本,所以设置成0.5会比较宽松。而在SVM阶段是由于SVM适用于小样本,所以设置0.3会更严格一点。
- 回归。用pool5的特征6*6*256维和bounding box的ground truth来训练回归,每种类型的回归器单独训练。输入是pool5的特征,以及每个样本对的坐标和长宽值。另外只对那些跟ground truth的IOU超过某个阈值且IOU最大的proposal回归,其余的region proposal不参与。详细说一下:对于某个region proposal:R,以及其对应的Ground truth:G,我们希望预测结果是:P,那么我们肯定希望P尽可能接近G。这里通过对pool5层的特征X做线性变换WX得到变换函数F(X),这些变换函数作用于R的坐标达到回归的作用(包括对x,y的平移以及对w,h的缩放)。因此损失函数可以表达为:R和G的差距减去P和G的差距要尽可能小。
R-CNN的测试可以分成以下步骤:
输入一张图像,利用selective search得到2000个region proposal。
对所有region proposal变换到固定尺寸并作为已训练好的CNN网络的输入,得到f7层的4096维特征,所以f7层的输出是2000*4096。
对每个类别,采用已训练好的这个类别的svm分类器对提取到的特征打分,所以SVM的weight matrix是4096*N,N是类别数,这里一共有20个SVM,N=20注意不是21。得分矩阵是2000*20,表示每个region proposal属于某一类的得分。
采用non-maximun suppression(NMS)对得分矩阵中的每一列中的region proposal进行剔除,就是去掉重复率比较高的几个region proposal,得到该列中得分最高的几个region proposal。NMS的意思是:举个例子,对于2000*20中的某一列得分,找到分数最高的一个region proposal,然后只要该列中其他region proposal和分数最高的IOU超过某一个阈值,则剔除该region proposal。这一轮剔除完后,再从剩下的region proposal找到分数最高的,然后计算别的region proposal和该分数最高的IOU是否超过阈值,超过的继续剔除,直到没有剩下region proposal。对每一列都这样操作,这样最终每一列(即每个类别)都可以得到一些region proposal。
- 用N=20个回归器对第4步得到的20个类别的region proposal进行回归,要用到pool5层的特征。pool5特征的权重W是在训练阶段的结果,测试的时候直接用。最后得到每个类别的修正后的bounding box。
四 优缺点
尽管R-CNN的识别框架与传统方法区别不是很大,但是得益于CNN优异的特征提取能力,R-CNN的效果还是比传统方法好很多。如在VOC2007数据集上,传统方法最高的平均精确度mAp为40%左右,而R-CNN的mAp达到了58.5%。
R-CNN的缺点是计算量大。R-CNN流程较多,包括region proposal的选取,训练卷积神经网络(softmax classifier,log loss),训练SVM(hinge loss)和训练 regressor(squared loss),这使得训练时间非常长(84小时),占用磁盘空间也大。在训练卷积神经网络的过程中对每个region proposal都要计算卷积,这其中重复的太多不必要的计算,试想一张图像可以得到2000多个region proposal,大部分都有重叠,因此基于region proposal卷积的计算量太大,而这也正是之后Fast R-CNN主要解决的问题。
参考文章
[1]R-CNN算法详解
[2]RCNN算法详解
[3]http://www.robots.ox.ac.uk/~tvg/publications/talks/fast-rcnn-slides.pdf
[4]R-CNN详解
[5]R-CNN论文详解(推荐,讲解很详细)
[6]Rich feature hierarchies for accurate object detection and semantic segmentation
[7]基于深度学习的目标检测技术演进:R-CNN、Fast R-CNN、Faster R-CNN(强烈推荐)
[9]https://github.com/AlpacaDB/selectivesearch(代码)
[10]目标检测(2)-RCNN
第二十九节,目标检测算法之R-CNN算法详解的更多相关文章
- 第十九节:Scrapy爬虫框架之Middleware文件详解
# -*- coding: utf-8 -*- # 在这里定义蜘蛛中间件的模型# Define here the models for your spider middleware## See doc ...
- 第二十九章、containers容器类部件QFrame框架部件详解
一.概述 容器部件就是可以在部件内放置其他部件的部件,在Qt Designer中可以使用的容器部件有如下: 容器中的Frame为一个矩形的框架对象,对应类QFrame,QFrame类是PyQt中带框架 ...
- centos MySQL主从配置 ntsysv chkconfig setup命令 配置MySQL 主从 子shell MySQL备份 kill命令 pid文件 discuz!论坛数据库读写分离 双主搭建 mysql.history 第二十九节课
centos MySQL主从配置 ntsysv chkconfig setup命令 配置MySQL 主从 子shell MySQL备份 kill命令 pid文件 discuz!论坛数 ...
- 大白话5分钟带你走进人工智能-第二十九节集成学习之随机森林随机方式 ,out of bag data及代码(2)
大白话5分钟带你走进人工智能-第二十九节集成学习之随机森林随机方式 ,out of bag data及代码(2) 上一节中我们讲解了随机森林的基本概念,本节的话我们讲解随机森 ...
- 风炫安全web安全学习第二十九节课 CSRF防御措施
风炫安全web安全学习第二十九节课 CSRF防御措施 CSRF防御措施 增加token验证 对关键操作增加token验证,token值必须随机,每次都不一样 关于安全的会话管理(SESSION) 不要 ...
- 目标检测之Faster-RCNN的pytorch代码详解(模型准备篇)
十月一的假期转眼就结束了,这个假期带女朋友到处玩了玩,虽然经济仿佛要陷入危机,不过没关系,要是吃不上饭就看书,吃精神粮食也不错,哈哈!开个玩笑,是要收收心好好干活了,继续写Faster-RCNN的代码 ...
- 目标检测之Faster-RCNN的pytorch代码详解(模型训练篇)
本文所用代码gayhub的地址:https://github.com/chenyuntc/simple-faster-rcnn-pytorch (非本人所写,博文只是解释代码) 好长时间没有发博客了 ...
- hiho一下 第二十九周 最小生成树三·堆优化的Prim算法【14年寒假弄了好长时间没搞懂的prim优化:prim算法+堆优化 】
题目1 : 最小生成树三·堆优化的Prim算法 时间限制:10000ms 单点时限:1000ms 内存限制:256MB 描述 回到两个星期之前,在成功的使用Kruscal算法解决了问题之后,小Ho产生 ...
- php第二十九节课
文件 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.o ...
随机推荐
- zabbix模板
https://github.com/xm-y/zabbix-community-repos https://monitoringartist.github.io/zabbix-searcher/
- css瀏覽器私有前綴名
-webkit-:chrome,safari -o-:opera -moz-:firefox -ms-:ie
- Mybatis之collection嵌套查询mapper文件写法
mapper.xml写法举例 <?xml version="1.0" encoding="UTF-8" ?> <!DOCTYPE mapper ...
- vue-cli:渲染过程理解2(vue init webpack方式创建)
main.js: 入口文件 import Vue from 'vue' //引入node_modules中的vue import App from './App' //引入当前路径(src)下的App ...
- Memcached cas 陷阱
本地使用的 php7环境,测试好上传到服务器后发现memcached get 报错,服务器上是php5环境: 出错代码如下: $memConnect->get($key,null, Memcac ...
- 共轭函数Fenchel不等式
f(x)不一定是凸函数,但他的共轭函数一定是凸函数.是仿射函数的逐点上确界. Fenchel不等式 f(x)+f*(x)>=xTy 如
- 在idea中设置记住git的用户名和密码
在idea中设置记住git的用户名和密码 1.在项目根目录下执行以下git命令: git config --global credential.helper store 2.执行上述命令后,在idea ...
- 基于docker部署使用ELK+FileBeat日志管理平台
Docker从狭义上来讲就是一个进程,从广义上来讲是一个虚拟容器,专业叫法为 Application Container(应用容器).Docker进程和普通的进程没有任何区别,它就是一个普通的应用进程 ...
- @ResponseBody注解
作用 @ResponseBody注解表示该方法的返回结果直接写入HTTP response body中 原理 在使用此注解之后跳过视图处理器,将返回的对象通过适当的转换器转换为指定的格式之后,直接将数 ...
- 聊聊jvm的CompressedClassSpace
序本文主要研究一下jvm的CompressedClassSpace CompressedClassSpacejava8移除了permanent generation,然后class metadata存 ...