#include <cstdio>
#include <algorithm>
#include <cstring>
#include <iostream>
using namespace std;
typedef long long ll;
const int maxn = 4e4 + 100;
int p[100][100];
int exa[maxn];
bool check(int a,int b,int c,int d,int f)
{
int y = p[0][a];
y = p[y][b];
y = p[y][c];
y = p[y][d];
if (p[y][f]==0) return 1;
return 0;
} int main()
{
for(int i=0;i<=9;i++)
{
for(int j=0;j<=9;j++)
{
scanf("%d", &p[i][j]);
}
}
for(int i=0;i<=9999;i++)
{
int a = i / 1000, b = (i / 100) % 10, c = (i / 10) % 10, d = i % 10;
int x = p[0][a];
x = p[x][b];
x = p[x][c];
x = p[x][d];
exa[i] = x;
}
ll ans = 0;
int flag = 0;
for(int i=0;i<=9999;i++)
{
flag = 0;
int a = i / 1000, b = (i / 100) % 10, c = (i / 10) % 10, d = i % 10;
if(a!=b&&check(b,a,c,d,exa[i]))
{
ans++;
continue;
}
if(b!=c&&check(a,c,b,d,exa[i]))
{
ans++;
continue;
}
if(c!=d&&check(a,b,d,c,exa[i]))
{
ans++;
continue;
}
if(d!=exa[i]&&check(a,b,c,exa[i],d))
{
ans++;
continue;
}
for(int j=0;j<=9;j++)
{
if (j == a) continue;
if (check(j,b,c,d,exa[i]))
{
// printf("2 ans=%d\n", ans);
ans++;
flag = 1;
break;
}
}
if (flag) continue;
for(int j=0;j<=9;j++)
{
if (j == b) continue;
if (check(a,j,c,d,exa[i]))
{
//printf("3 ans=%d\n", ans);
ans++;
flag = 1;
break;
}
}
if (flag) continue;
for(int j=0;j<=9;j++)
{
if (j == c) continue;
if (check(a,b,j,d,exa[i]))
{
//printf("4 ans=%d\n", ans);
ans++;
flag = 1;
break;
}
}
if (flag) continue;
for (int j = 0; j <= 9; j++)
{
if (j == d) continue;
if (check(a,b,c,j,exa[i]))
{
//printf("5 ans=%d\n", ans);
ans++;
flag = 1;
break;
}
}
if (flag) continue;
for(int j=0;j<=9;j++)
{
if (j == exa[i]) continue;
if(check(a,b,c,d,j))
{
//printf("6 ans=%d\n", ans);
ans++;
flag = 1;
break;
}
}
}
printf("%lld\n", ans);
return 0;
}

  

Description

The small city where you live plans to introduce a new social security number (SSN) system. Each citizen will be identified by a five-digit SSN. Its first four digits indicate the basic ID number (0000–9999) and the last one digit is a check digit for detecting errors. For computing check digits, the city has decided to use an operation table. An operation table is a 10 × 10 table of decimal digits whose diagonal elements are all 0. Below are two example operation tables.

 

Using an operation table, the check digit e for a four-digit basic ID number abcd is computed by using the following formula. Here, i ⊗ j denotes the table element at row i and column j.
e = (((0 ⊗ a) ⊗ b) ⊗ c) ⊗ d
For example, by using Operation Table 1 the check digit e for a basic ID number abcd = 2016
is computed in the following way.
e = (((0 ⊗ 2) ⊗ 0) ⊗ 1) ⊗ 6 = (( 1 ⊗ 0) ⊗ 1) ⊗ 6
= ( 7 ⊗ 1) ⊗ 6
= 9 ⊗ 6
= 6
Thus, the SSN is 20166.
Note that the check digit depends on the operation table used. With Operation Table 2, we have e = 3 for the same basic ID number 2016, and the whole SSN will be 20163

The purpose of adding the check digit is to detect human errors in writing/typing SSNs. The following check function can detect certain human errors. For a five-digit number abcde, the check function is defined as follows. check(abcde) = ((((0 ⊗ a) ⊗ b) ⊗ c) ⊗ d) ⊗ e
This function returns 0 for a correct SSN. This is because every diagonal element in an operation table is 0 and for a correct SSN we have e = (((0 ⊗ a) ⊗ b) ⊗ c) ⊗ d:
check(abcde) = ((((0 ⊗ a) ⊗ b) ⊗ c) ⊗ d) ⊗ e = e ⊗ e = 0.
On the other hand, a non-zero value returned by check indicates that the given number cannot be a correct SSN. Note that, depending on the operation table used, check function may return 0 for an incorrect SSN. Kinds of errors detected depends on the operation table used; the table decides the quality of error detection. The city authority wants to detect two kinds of common human errors on digit sequences: altering one single digit and transposing two adjacent digits, as shown in Figure B.1. An operation table is good if it can detect all the common errors of the two kinds on all SSNs made from four-digit basic ID numbers 0000–9999. Note that errors with the check digit, as well as with four basic ID digits, should be detected. For example, Operation Table 1 is good. Operation Table 2 is not good because, for 20613, which is a number obtained by transposing the 3rd and the 4th digits of a correct SSN 20163, check(20613) is 0. Actually, among 10000 basic ID numbers, Operation Table 2 cannot detect one or more common errors for as many as 3439 basic ID numbers. Given an operation table, decide how good it is by counting the number of basic ID numbers for which the given table cannot detect one or more common errors.

Input

The input consists of a single test case of the following format.
x00 x01 · · · x09
.
.
.
x90 x91 · · · x99
The input describes an operation table with xij being the decimal digit at row i and column j. Each line corresponds to a row of the table, in which elements are separated by a single space. The diagonal elements xii (i = 0, . . . , 9) are always 0

Output

Output the number of basic ID numbers for which the given table cannot detect one or more common human errors

Sample Input

0 3 1 7 5 9 8 6 4 2
7 0 9 2 1 5 4 8 6 3
4 2 0 6 8 7 1 3 5 9
1 7 5 0 9 8 3 4 2 6
6 1 2 3 0 4 5 9 7 8
3 6 7 4 2 0 9 5 8 1
5 8 6 9 7 2 0 1 3 4
8 9 4 5 3 6 2 0 1 7
9 4 3 8 6 1 7 2 0 5
2 5 8 1 4 3 6 7 9 0

Sample Output

0

Hint

这个题目把题意读懂了就好写了,比较简单,直接暴力就可以,不过有很多细节。

2292: Quality of Check Digits 中南多校 暴力枚举的更多相关文章

  1. 2293: Distribution Center 中南多校

    Description The factory of the Impractically Complicated Products Corporation has many manufacturing ...

  2. 中南多校对抗赛 第三场 E

    E:Eulerian Flight Tour 题意: 给你一张无向图,要你给这个图加边使得其形成一个欧拉回路 题解: 首先使得所有节点的度都为偶数,然后将这个图联通起来 对于度为奇数的点,将将他和他的 ...

  3. 中南多校对抗赛 第三场 B

    B:Arithmetic Progressions 题意: 给你一个长度为n的序列,问你这个序列中长度最长的等差数列长度为多少 题解: 方法一:将数组从小到大排序,n方扫,枚举出公差d,然后二分找有多 ...

  4. Highest Tower 18中南多校第一场H题

    一.题意 给出N个方块,要求给出一个方案,使得1. 所有方块都被使用到(题目数据保证这点) 2.所有方块垒成一个塔,且上面的方块宽度小于下面的方块 3.每个方块只能用一次,可以横着或者竖着. n范围5 ...

  5. Card Hand Sorting 18中南多校第一场C题

    一.题意 随机给你一堆牌(标准扑克牌),之后让你按照: 第一优先规则:所有相同花色的在一起 第二优先规则:所有相同花色的必须按照升序或者降序排列 问,你最少要拿出多少张牌插入到其他的地方以维持这个状况 ...

  6. Artwork 18年中南多校第一场A

    一.题意 对于一个矩阵,若干道命令,每道命令将会把某一段格子涂黑,请问每次涂黑之后矩阵中未被涂黑的块的数量? 二.思路 保存每道命令,并且忠实的执行他,到最后一步开始搜索联通块的数量,并将其保存. 之 ...

  7. 中南林业大学校赛 I 背包问题 ( 折半枚举 || 01背包递归写法 )

    题目链接 题意 : 中文题 分析 :  价值和重量都太过于大,所以采用折半枚举的方法,详细可以看挑战的超大背包问题 由于 n <= 30 那么可以不必直接记录状态来优化,面对每个用例 直接采用递 ...

  8. Codeforces Round #539 Div. 1

    A:即求长度为偶数的异或和为0的区间个数,对前缀异或和用桶记录即可. #include<iostream> #include<cstdio> #include<cmath ...

  9. CROC 2016 - Elimination Round (Rated Unofficial Edition) C. Enduring Exodus 二分

    C. Enduring Exodus 题目连接: http://www.codeforces.com/contest/655/problem/C Description In an attempt t ...

随机推荐

  1. .NET面试题01-值类型与引用类型

    常见面试题目: 1. 值类型和引用类型的区别? 2. 结构和类的区别? 3. delegate是引用类型还是值类型?enum.int[]和string呢? 4. 堆和栈的区别? 5. 什么情况下会在堆 ...

  2. frp 初探

    条件: (1) 服务器端要有公网 IP (2) 客户端能上网,能够访问服务器的公网 IP 下载 https://github.com/fatedier/frp/releases 根据服务器和客户端的操 ...

  3. Echarts图表legend的排版问题(转载)

    来源:https://blog.csdn.net/david_jiahuan/article/details/80096922 案例一 项目中现有样式: 客户需求:将图例分为两列,并且上下两列的图例要 ...

  4. Java_文件夹拷贝

    一.思路 * 文件夹的拷贝 1.递归查找子孙级文件 2.文件复制 文件夹创建 二.代码 package com.ahd.File; import java.io.File; import java.i ...

  5. mediainfo使用

    1.linux安装mediainfo     yum  install  mediainfo(epel源安装) 2.输出文件信息到xml文件 mediainfo --OUTPUT=XML -f ftp ...

  6. 5.枚举和注解_EJ

    第30条: 用enum代替int常量 枚举类型是指由一组固定的常量组成合法值得类型.例如一年中的季节,太阳系中的行星或一副牌中的花色.在开发中我们经常在类使用static final来定义一个int常 ...

  7. Sql 判断函数是否存在、sql判断表是否存在、sql判断存储过程是否存在、sql判断视图是否存在

    --数据库是否存在 IF exists(SELECT * FROM master..sysdatabases WHERE name=N'库名') PRINT 'exists' ELSE PRINT ' ...

  8. BZOJ1058: [ZJOI2007]报表统计(set)

    Time Limit: 15 Sec  Memory Limit: 162 MBSubmit: 4190  Solved: 1420[Submit][Status][Discuss] Descript ...

  9. 2018-11-21 手工翻译Vue.js源码第一步:14个文件重命名

    背景 对现有开源项目的代码进行翻译(文件名/命名/注释) · Issue #107 · program-in-chinese/overview 简单地说, 通过翻译源码, 提高项目代码可读性(对于母语 ...

  10. ambari 卸载脚本

    #!/bin/bash # Program: # uninstall ambari automatic PATH=/bin:/sbin:/usr/bin:/usr/sbin:/usr/local/bi ...