题意是求出所给各点中最近点对的距离的一半(背景忽略)。

用分治的思想,先根据各点的横坐标进行排序,以中间的点为界,分别求出左边点集的最小距离和右边点集的最小距离,然后开始合并,分别求左右点集中各点与中间点的距离,从这些距离与点集中的最小距离比较,求得最小距离,此处可按纵坐标排序,将纵坐标距离已经大于之前最小距离的部分都剪枝。

代码如下:

 #include <bits/stdc++.h>
using namespace std;
int n,a[];
struct point
{
double x,y;
}p[];
bool cmpx(point a,point b)
{
return a.x < b.x;
}
bool cmpy(int a,int b)
{
return p[a].y < p[b].y;
}
double dis(point a,point b)
{
return sqrt( (a.x-b.x)*(a.x-b.x) + (a.y-b.y)*(a.y-b.y) );
}
double min(double a,double b,double c)
{
if(a>b) return b>c?c:b;
return a>c?c:a;
}
double fin(int from,int to)
{
if(from+ == to ) return dis(p[from],p[to]);
if(from+ == to ) return min(dis(p[from],p[from+]),dis(p[from],p[to]),dis(p[from+],p[to]));
int mid = (from+to)>>;
double ans = min(fin(from,mid),fin(mid+,to));
int cnt = ;
for(int i = from; i <= to; i++)
if(abs(p[i].x-p[mid].x) <= ans) a[cnt++] = i;
sort(a,a+cnt,cmpy);
for(int i = ; i < cnt; i++)
for(int j = i+; j < cnt; j++)
{
if(p[a[j]].y-p[a[i]].y >= ans) break;
ans = min(ans,dis(p[a[i]],p[a[j]]));
}
return ans;
}
int main()
{
while(scanf("%d",&n)&&n)
{
for(int i = ; i < n; i++)
scanf("%lf %lf",&p[i].x,&p[i].y);
sort(p,p+n,cmpx);
printf("%.2lf\n",fin(,n-)/);
}
return ;
}

但是呢,开始时本人并不是这么写的,而是求了所有点中最小的横坐标和纵坐标,然后以此为参照点,分别求其他各点到参照点的距离,以距离排序,再求出相邻两点距离的最小值。这么写是上面写法的用时一半左右,尽管 AC 了,但是这么写是不对的......

如图所示,图中的点 1 和点 2 距离比点 1 和点 3 的距离更近,但是第二种方法则是用点 1 和点 3距离与点 3 和点 2 距离中求较小值。(题目的测试数据中可能没有这样的数据吧......)

第二种方法的代码如下:

 #include <bits/stdc++.h>
using namespace std;
int n;
struct point
{
double x,y,dis;
}st,p[];
bool cmp(point a,point b)
{
if(a.dis!=b.dis) return a.dis < b.dis;
return a.x<b.x;
}
double dist(point a,point b)
{
return sqrt( (a.x-b.x)*(a.x-b.x) + (a.y-b.y)*(a.y-b.y) );
}
int main()
{
double sml;
while(scanf("%d",&n)&&n)
{
st.x = st.y = 1000000.0;
sml = 1000000.0;
for(int i = ; i < n; i++)
{
scanf("%lf %lf",&p[i].x,&p[i].y);
if(p[i].x < st.x) st.x = p[i].x;
if(p[i].y < st.y) st.y = p[i].y;
}
for(int i = ; i < n; i++)
p[i].dis = dist(p[i],st);
sort(p,p+n,cmp);
for(int i = ; i < n; i++)
if(dist(p[i],p[i-])<sml) sml = dist(p[i],p[i-]);
printf("%.2lf\n",sml/);
}
return ;
}

HDU 1007(套圈 最近点对距离)的更多相关文章

  1. hdu 1007 Quoit Design (最近点对问题)

    Quoit Design Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Tot ...

  2. HDU 1007 Quoit Design最近点对( 分治法)

    题意: 给出平面上的n个点,问任意点对之间的最短距离是多少? 思路: 先将所有点按照x坐标排序,用二分法将n个点一分为二个部分,递归下去直到剩下两或一个点.对于一个部分,左右部分的答案分别都知道,那么 ...

  3. Quoit Design (HDU 1007)平面的最近点对

    题目大意:给定平面上的 n 个点,求距离最近的两个点的距离的一半. n <= 10^5.   晕乎乎的度过了一上午... 总之来学习下分治吧233 分治就是把大问题拆成小问题,然后根据对小问题处 ...

  4. HDU 1007 平面上最近点对 分治

    思路: 分治 套路题 //By SiriusRen #include <cmath> #include <cstdio> #include <algorithm> ...

  5. hdu 1007 Quoit Design 分治求最近点对

    Quoit Design Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Tot ...

  6. HDU 1007 Quoit Design

    传送门 Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) Problem Des ...

  7. 【HDU 1007】 Quoit Design

    [题目链接] http://acm.hdu.edu.cn/showproblem.php?pid=1007 [算法] 答案为平面最近点对距离除以2 [代码] #include <algorith ...

  8. HDU 1007 Quoit Design(二分+浮点数精度控制)

    Quoit Design Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) To ...

  9. UVA10054-The Necklace(无向图欧拉回路——套圈算法)

    Problem UVA10054-The Necklace Time Limit: 3000 mSec Problem Description Input The input contains T t ...

随机推荐

  1. MT【298】双参数非齐次

    若函数$f(x)=x^2+(\dfrac{1}{3}+a)x+b$在$[-1,1]$上有零点,则$a^2-3b$的最小值为_____ 分析:设零点为$x_0$,则$b=-x^2_0-(\dfrac{1 ...

  2. 【 HDU4773 】Problem of Apollonius (圆的反演)

    BUPT2017 wintertraining(15) #5G HDU - 4773 - 2013 Asia Hangzhou Regional Contest problem D 题意 给定两个相离 ...

  3. 使用树莓派 Raspberry Pi 播放豆瓣 FM

    安装 mplayersudo apt-get install mplayer 安装 Python-pipsudo apt-get install python-pip 通过 python-pip 安装 ...

  4. [hexo]如何更换主题、删除文章

    如何修改主题 hexo有很多主题,每个人可以选择自己喜欢的主题来应用,也可以自己设计主题并且上传形成公共主题供大家下载. 如果是自己设计主题的话,会稍微麻烦一些,需要自己配置很多文件,并且编写css以 ...

  5. [ZJOI2016]小星星&[SHOI2016]黑暗前的幻想乡(容斥)

    这两道题思路比较像,所以把他们放到一块. [ZJOI2016]小星星 题目描述 小Y是一个心灵手巧的女孩子,她喜欢手工制作一些小饰品.她有n颗小星星,用m条彩色的细线串了起来,每条细线连着两颗小星星. ...

  6. 单片机的编程语言和开发环境 LET′S TRY“嵌入式编程”: 3 of 6

    单片机的编程语言和开发环境 LET′S TRY“嵌入式编程”: 3 of 6 本连载讲解作为嵌入式系统开发技术人员所必需具备的基础知识.这些基础知识是硬件和软件技术人员都应该掌握的共通技术知识. 在“ ...

  7. CodeForces - 589D(暴力+模拟)

    题目链接:http://codeforces.com/problemset/problem/589/D 题目大意:给出n个人行走的开始时刻,开始时间和结束时间,求每个人分别能跟多少人相遇打招呼(每两人 ...

  8. 洛谷 P2158 仪仗队

    欧拉函数入门题... 当然如果有兴趣也可以用反演做...类似这题 题意就是求,方阵从左下角出发能看到多少个点. 从0开始给坐标 发现一个点能被看到,那么横纵坐标互质. 然后求欧拉函数的前缀和,* 2 ...

  9. [luogu4018][Roy&October之取石子]

    题目链接 思路 这个题思路挺巧妙的. 情况一: 首先如果这堆石子的数量是1~5,那么肯定是先手赢.因为先手可以直接拿走这些石子.如果石子数量恰好是6,那么肯定是后手赢.因为先手无论怎样拿也无法直接拿走 ...

  10. js 日期比较大小,js判断日期是否在区间内,js判断时间段是否在另外一个时间段内

    /** * 日期解析,字符串转日期 * @param dateString 可以为2017-02-16,2017/02/16,2017.02.16 * @returns {Date} 返回对应的日期对 ...