Description

Longge的数学成绩非常好,并且他非常乐于挑战高难度的数学问题。现在问题来了:给定一个整数 \(N\),你需要求出 \(\sum gcd(i, N)(1\le i \le N)\)。

Input

一个整数,为 \(N\)。

Output

一个整数,为所求的答案。

Sample Input

6

Sample Output

15

HINT

\(0<N\le 2^{32}\)

Solution

\[\begin{eqnarray}
\sum_{i = 1}^{n}\gcd(i,n)&=&\sum_{d\mid n}d\sum_{i=1}^{n}[\gcd(i,n)=d]\\
&=&\sum_{d|n}d\sum_{i=1}^{\frac{n}{d}}[\gcd(i,\frac{n}{d})=1]\\
&=&\sum_{d\mid n}d\times\varphi\left(\frac{n}{d}\right)
\end{eqnarray}
\]

设 \(p\) 为质数,有 \(\varphi(p^k)=p^k-\dfrac{p^k}{p}=p^k(1-\dfrac{1}{p})\),因此

\[\begin{eqnarray}
\varphi(n)&=&\varphi(p_1^{k_1})\varphi(p_2^{k_2})\varphi(p_3^{k_3})\cdots\\
&=&p_1^{k_1}(1-\frac{1}{p_1})p_2^{k_2}(1-\frac{1}{p_2})p_3^{k_3}(1-\frac{1}{p_3})\cdots\\
&=&n(1-\frac{1}{p_1})(1-\frac{1}{p_2})(1-\frac{1}{p_3})\cdots
\end{eqnarray}
\]

因此就有了 \(O(\sqrt n)\) 求 \(\varphi(n)\) 的做法。

〖推论〗当 \(n\) 为奇数时,\(\varphi(n)=\varphi(2n)\)。

Code

#include <cstdio>
#include <cmath> typedef long long LL;
const int N = 65540;
int phi[N], p[N], tot, np[N], m; LL n, ans; void euler(int n) {
phi[1] = 1;
for (int i = 2; i <= n; ++i) {
if (!np[i]) p[++tot] = i, phi[i] = i - 1;
for (int j = 1; j <= tot && i * p[j] <= n; ++j) {
np[i * p[j]] = 1;
if (i % p[j] == 0) { phi[i * p[j]] = phi[i] * p[j]; break; }
phi[i * p[j]] = phi[i] * (p[j] - 1);
}
}
}
LL getphi(LL n) {
int m = sqrt(n); LL res = n;
for (int i = 1; i <= tot && p[i] <= m; ++i)
if (n % p[i] == 0) {
res -= res / p[i];
while (n % p[i] == 0) n /= p[i];
}
if (n > 1) res -= res / n;
return res;
}
int main() {
scanf("%lld", &n), m = sqrt(n), euler(m);
for (int i = 1; i <= m; ++i)
if (n % i == 0) ans += i * getphi(n / i) + (n / i) * phi[i];
if (1LL * m * m == n) ans -= 1LL * m * phi[m];
printf("%lld\n", ans);
return 0;
}

[BZOJ 2705] [SDOI 2012] Longge的问题的更多相关文章

  1. [SDOI 2012]Longge的问题

    Description Longge的数学成绩非常好,并且他非常乐于挑战高难度的数学问题.现在问题来了:给定一个整数N,你需要求出∑gcd(i, N)(1<=i <=N). Input 一 ...

  2. [BZOJ 1879][SDOI 2009]Bill的挑战 题解(状压DP)

    [BZOJ 1879][SDOI 2009]Bill的挑战 Description Solution 1.考虑状压的方式. 方案1:如果我们把每一个字符串压起来,用一个布尔数组表示与每一个字母的匹配关 ...

  3. [BZOJ 3992] [SDOI 2015] 序列统计(DP+原根+NTT)

    [BZOJ 3992] [SDOI 2015] 序列统计(DP+原根+NTT) 题面 小C有一个集合S,里面的元素都是小于质数M的非负整数.他用程序编写了一个数列生成器,可以生成一个长度为N的数列,数 ...

  4. [BZOJ 3123] [SDOI 2013]森林(可持久化线段树+并查集+启发式合并)

    [BZOJ 3123] [SDOI 2013]森林(可持久化线段树+启发式合并) 题面 给出一个n个节点m条边的森林,每个节点都有一个权值.有两种操作: Q x y k查询点x到点y路径上所有的权值中 ...

  5. BZOJ 2705: [SDOI2012]Longge的问题 [欧拉函数]

    2705: [SDOI2012]Longge的问题 Time Limit: 3 Sec  Memory Limit: 128 MBSubmit: 2553  Solved: 1565[Submit][ ...

  6. BZOJ 2705: [SDOI2012]Longge的问题

    2705: [SDOI2012]Longge的问题 Time Limit: 3 Sec  Memory Limit: 128 MBSubmit: 2554  Solved: 1566[Submit][ ...

  7. BZOJ 2705: [SDOI2012]Longge的问题 GCD

    2705: [SDOI2012]Longge的问题 Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://www.lydsy.com/JudgeOnl ...

  8. bzoj 2705: [SDOI2012]Longge的问题 歐拉函數

    2705: [SDOI2012]Longge的问题 Time Limit: 3 Sec  Memory Limit: 128 MBSubmit: 1035  Solved: 669[Submit][S ...

  9. Bzoj 2705: [SDOI2012]Longge的问题 欧拉函数,数论

    2705: [SDOI2012]Longge的问题 Time Limit: 3 Sec  Memory Limit: 128 MBSubmit: 1959  Solved: 1229[Submit][ ...

随机推荐

  1. 性能调优9:根据WaitType诊断性能

    SQL Server数据库接收到查询请求,从生成计划到执行计划的过程,等待次数和等待时间在一定程度上揭示了系统性能的压力,如果资源严重不足,就会成为性能的瓶颈.因此,对等待的监控非常有助于对系统性能进 ...

  2. Xamarin.Forms 3.0的新特性

    近期因为工作关系开始使用Xamarin,翻译了两篇国外的介绍3.0新特性的文章,供大家参考. 第一篇文章来自Xamarin官网,原文地址:https://blog.xamarin.com/xamari ...

  3. 解决win7 win10上网卡慢问题

    在管理员身份运行CMD命令行,然后输入netsh interface tcp set global autotuninglevel=disable 即可.

  4. H5 21-属性选择器下

    21-属性选择器下 --> <!DOCTYPE html> <html lang="en"> <head> <meta charse ...

  5. H5 文字属性的缩写

    05-文字属性的缩写 abc我是段落 <!DOCTYPE html> <html lang="en"> <head> <meta char ...

  6. c++入门之类继承初步

    继承是面向对象的一种很重要的特性,先来复习基类的基本知识: 先上一段代码: # ifndef TABLE00_H # define TABLE00_H # include "string&q ...

  7. Day5 Pyhton基础之编码与解码(四)

    1.编码与解码 1.1现在常用的编码类型

  8. 项目笔记-SC01

    项目启动已有两周,从分析需求到系统设计,文档性工作比较多,只是文档参考比较少,相对的标准就不好界定了. 计划开发时间理论上是按部就班的,没什么变化,可能真正进入开发阶段才会遇到一些问题吧,有些问题就是 ...

  9. 线程中的current thread not owner异常错误

    多线程常用的一些方法: wait(),wait(long),notify(),notifyAll()等 这些方法是当前类的实例方法, wait()      是使持有对象锁的线程释放锁;wait(lo ...

  10. Servlet 快速概览

    目录 生命周期 web.xml 获取表单数据(设置请求的编码格式) 返回响应内容(设置响应的编码格式) 结合前两点,总结基本模板 获取请求协议头部信息 设置响应头部信息 使用过滤器 在web.xml中 ...