POJ3417 Network(算竞进阶习题)
LCA + 树上差分(边差分)
由题目意思知,所有主要边即为该无向图的一个生成树。
我们考虑点(u,v)若连上一条附加边,那么我们切断(u,v)之间的主要边之后,由于附加边的存在,(u,v)之间的路径形成了一个环,
所以我们还必须将这条附加边也切断。
因此我们可以看成(u,v)之间的路径上的所有边都被覆盖了一次。
我们可以统计出所有边被覆盖的次数,就可以自然的到答案:
- 若该边被覆盖了0次,那么切断主边之后随意切断一条附加边即可,答案总数 += 附加边的数量
- 若该边被覆盖了1次,那么切断主边之后必须切断附加边,答案总数++
- 若改变被覆盖了2次及2次以上,无论如何操作都得不到答案
如何求出每条边的覆盖次数呢?当然是用树上差分,这里是将边差分,val[x]表示从x的父亲节点到x的路径经过的次数。
当由路径被(u,v)被覆盖时,val[u]++, val[v]++, val[lca(u,v)]-=2。
最后dfs一次生成树统计val总和即可
#include <bits/stdc++.h>
#define INF 0x3f3f3f3f
#define full(a, b) memset(a, b, sizeof a)
using namespace std;
typedef long long ll;
inline int lowbit(int x){ return x & (-x); }
inline int read(){
int X = 0, w = 0; char ch = 0;
while(!isdigit(ch)) { w |= ch == '-'; ch = getchar(); }
while(isdigit(ch)) X = (X << 3) + (X << 1) + (ch ^ 48), ch = getchar();
return w ? -X : X;
}
inline int gcd(int a, int b){ return a % b ? gcd(b, a % b) : b; }
inline int lcm(int a, int b){ return a / gcd(a, b) * b; }
template<typename T>
inline T max(T x, T y, T z){ return max(max(x, y), z); }
template<typename T>
inline T min(T x, T y, T z){ return min(min(x, y), z); }
template<typename A, typename B, typename C>
inline A fpow(A x, B p, C lyd){
A ans = 1;
for(; p; p >>= 1, x = 1LL * x * x % lyd)if(p & 1)ans = 1LL * x * ans % lyd;
return ans;
}
const int N = 100005;
int n, m, val[N], head[N], cnt, p[N][20], depth[N], t;
ll ans;
bool vis[N];
struct Edge{ int v, next; }edge[N<<2];
inline void addEdge(int a, int b){
edge[cnt].v = b, edge[cnt].next = head[a], head[a] = cnt ++;
}
inline void dfs(int s, int fa){
depth[s] = depth[fa] + 1;
p[s][0] = fa;
for(int i = 1; i <= t; i ++){
p[s][i] = p[p[s][i - 1]][i - 1];
}
for(int i = head[s]; i != -1; i = edge[i].next){
int u = edge[i].v;
if(u == fa) continue;
dfs(u, s);
}
}
inline int lca(int x, int y){
if(depth[x] < depth[y]) swap(x, y);
for(int i = t; i >= 0; i --){
if(depth[p[x][i]] >= depth[y]) x = p[x][i];
}
if(x == y) return y;
for(int i = t; i >= 0; i --){
if(p[x][i] != p[y][i]) x = p[x][i], y = p[y][i];
}
return p[y][0];
}
inline void dfs(int s){
vis[s] = true;
for(int i = head[s]; i != -1; i = edge[i].next){
int u = edge[i].v;
if(vis[u]) continue;
dfs(u);
val[s] += val[u];
}
if(s != 1 && val[s] == 0) ans += m;
else if(s != 1 && val[s] == 1) ans += 1;
}
inline void init(){
cnt = 0, ans = 0, t = 0;
full(val, 0), full(p, 0), full(depth, 0), full(head, -1);
full(vis, 0);
}
int main(){
while(scanf("%d%d", &n, &m) != EOF){
init();
for(int i = 0; i < n - 1; i++){
int u, v; scanf("%d%d", &u, &v);
addEdge(u, v), addEdge(v, u);
}
t = (int) (log(n) / log(2)) + 1;
dfs(1, 0);
for(int i = 0; i < m; i++){
int u, v; scanf("%d%d", &u, &v);
val[u]++, val[v]++, val[lca(u, v)] -= 2;
}
dfs(1);
printf("%lld\n", ans);
}
return 0;
}
POJ3417 Network(算竞进阶习题)的更多相关文章
- POJ 1966 Cable TV Network (算竞进阶习题)
拆点+网络流 拆点建图应该是很常见的套路了..一张无向图不联通,那么肯定有两个点不联通,但是我们不知道这两个点是什么. 所以我们枚举所有点,并把每个点拆成入点和出点,每次把枚举的两个点的入点作为s和t ...
- 洛谷P4178 Tree (算竞进阶习题)
点分治 还是一道点分治,和前面那道题不同的是求所有距离小于等于k的点对. 如果只是等于k,我们可以把重心的每个子树分开处理,统计之后再合并,这样可以避免答案重复(也就是再同一个子树中出现路径之和为k的 ...
- BZOJ 1912 巡逻(算竞进阶习题)
树的直径 这题如果k=1很简单,就是在树的最长链上加个环,这样就最大化的减少重复的路程 但是k=2的时候需要考虑两个环的重叠部分,如果没有重叠部分,则和k=1的情况是一样的,但是假如有重叠部分,我们可 ...
- POJ 2449 Remmarguts' Date (算竞进阶习题)
A* + dijkstra/spfa 第K短路的模板题,就是直接把最短路当成估价函数,保证估价函数的性质(从当前状态转移的估计值一定不大于实际值) 我们建反图从终点跑最短路,就能求出从各个点到终点的最 ...
- BZOJ 1855 股票交易 (算竞进阶习题)
单调队列优化dp dp真的是难..不看题解完全不知道状态转移方程QAQ 推出方程后发现是关于j,k独立的多项式,所以可以单调队列优化.. #include <bits/stdc++.h> ...
- POJ 1821 Fence (算竞进阶习题)
单调队列优化dp 我们把状态定位F[i][j]表示前i个工人涂了前j块木板的最大报酬(中间可以有不涂的木板). 第i个工人不涂的话有两种情况: 那么F[i - 1][j], F[i][j - 1]就成 ...
- POJ 1015 Jury Compromise (算竞进阶习题)
01背包 我们对于这类选或者不选的模型应该先思考能否用01背包来解. 毫无疑问物体的价值可以看成最大的d+p值,那么体积呢?题目的另一个限制条件是d-p的和的绝对值最小,这启发我们把每个物体的d-p的 ...
- BZOJ 2200 道路与航线 (算竞进阶习题)
dijkstra + 拓扑排序 这道题有负权边,但是卡了spfa,所以我们应该观察题目性质. 负权边一定是单向的,且不构成环,那么我们考虑先将正权边连上.然后dfs一次找到所有正权边构成的联通块,将他 ...
- POJ 3974 Palindrome (算竞进阶习题)
hash + 二分答案 数据范围肯定不能暴力,所以考虑哈希. 把前缀和后缀都哈希过之后,扫描一边字符串,对每个字符串二分枚举回文串长度,注意要分奇数和偶数 #include <iostream& ...
随机推荐
- js中布尔值为false的六种情况
下面6种值转化为布尔值时为false,其他转化都为true 1.undefined(未定义,找不到值时出现) 2.null(代表空值) 3.false(布尔值的false,字符串"false ...
- H5 marquee标签
39-marquee标签 内容 属性: direction: 设置滚动方向 left/right/up/down scrollamount: 设置滚动速度, 值越大就越快 loop: 设置滚动次数, ...
- 求n!中含有某个因子个数的方法
链接 [https://www.cnblogs.com/dolphin0520/archive/2011/04/11/2012891.html]
- windows 环境下 eclipse + maven + tomcat 的 hello world 创建和部署
主要记录自己一个新手用 eclipse + maven + tomcat 搭建 hello world 的过程,以及遇到的问题.讲真都是自己通过百度和谷歌一步步搭建的项目,没问过高手,也没高手可问,由 ...
- CentOS 6.5 手动rpm包安装gcc、g++
摘自:https://blog.csdn.net/lichen_net/article/details/70211204 mount CentOS的安装光盘,然后先后安装 rpm -ivh ppl-0 ...
- 【学习总结】GirlsInAI ML-diary day-2-Python版本选取与Anaconda中环境配置与下载
[学习总结]GirlsInAI ML-diary 总 原博github链接-day2 Python版本选取与Anaconda中环境配置与下载 1-查看当前Jupyter的Python版本 开始菜单选J ...
- PAT L2-014 列车调度
https://pintia.cn/problem-sets/994805046380707840/problems/994805063166312448 火车站的列车调度铁轨的结构如下图所示. 两端 ...
- CentOS6.5配置 cron
CentOS6.5配置 cron 任务 - mengjiaoduan的博客 - CSDN博客https://blog.csdn.net/mengjiaoduan/article/details/649 ...
- jvisualvm远程监控 visualgc插件 不受此jvm支持问题
https://yq.aliyun.com/ziliao/478212 1.修改远程服务器上java设置 vi $JAVA_HOME/jre/lib/security/java.policy 在 ...
- Azure系列2.1.9 —— CloudBlob
(小弟自学Azure,文中有不正确之处,请路过各位大神指正.) 网上azure的资料较少,尤其是API,全是英文的,中文资料更是少之又少.这次由于公司项目需要使用Azure,所以对Azure的一些学习 ...