HDU4625 JZPTREE 【树形DP】【第二类斯特林数】
题目大意:
对1到n求题目中描述的那个式子。
题目分析:
幂不好处理,转化为斯特林数。
根据$ n^k= \sum_ { i=0 }^k S(k,i)×i!×C(n,i) $。
我们可以将问题转化为对每个u和$ j=1 \sim k $求$ \sum_ { i=1 }^n \binom{dist(u,i)}{j} $。 通过杨辉三角向子树做一遍树形DP,再向父亲做一遍树形DP即可。
代码:
#include<bits/stdc++.h>
using namespace std; const int mod = ; int n,k; int S[][];
int f[][];
int fac[];
vector <int> g[]; void init(){
memset(f,,sizeof(f));
} void read(){
scanf("%d%d",&n,&k);
for(int i=;i<=n;i++) g[i].clear();
for(int i=;i<n;i++){
int u,v; scanf("%d%d",&u,&v);
g[u].push_back(v); g[v].push_back(u);
}
} void dfs1(int now,int fa){
for(int i=;i<g[now].size();i++){
if(g[now][i] == fa) continue;
dfs1(g[now][i],now);
f[now][] += f[g[now][i]][];
f[now][] %= mod;
for(int j=;j<=k;j++){
f[now][j] += f[g[now][i]][j] + f[g[now][i]][j-];
f[now][j] %= mod;
}
}
f[now][] ++;
} void dfs2(int now,int fa){
for(int i=;i<g[now].size();i++){
if(g[now][i] == fa) continue;
for(int j=k;j>=;j--){
int p = f[now][j]-f[g[now][i]][j]-f[g[now][i]][j-];
p = ((p%mod)+mod)%mod;
int q=f[now][j-]-f[g[now][i]][j-]-(j->=?f[g[now][i]][j-]:);
q = ((q%mod)+mod)%mod;
f[g[now][i]][j] += p+q;
f[g[now][i]][j] %= mod;
}
f[g[now][i]][] += f[now][] - f[g[now][i]][];
f[g[now][i]][] %= mod;
dfs2(g[now][i],now);
}
} void work(){
dfs1(,);
dfs2(,);
for(int i=;i<=n;i++){
int ans = ;
for(int j=;j<=k;j++){
int nowans = (((fac[j]*f[i][j])%mod)*S[k][j])%mod;
ans += nowans; ans %= mod;
}
printf("%d\n",ans);
}
} int main(){
int t; scanf("%d",&t);
fac[] = ;
for(int i=;i<=;i++) S[i][] = ,fac[i] = (fac[i-]*i)%mod;
for(int i=;i<=;i++){
for(int j=;j<=i;j++) S[i][j] = (S[i-][j-]+j*S[i-][j])%mod;
}
while(t--){
init();
read();
work();
}
return ;
}
HDU4625 JZPTREE 【树形DP】【第二类斯特林数】的更多相关文章
- BZOJ 2159: Crash 的文明世界(树形dp+第二类斯特林数+组合数)
题意 给定一棵 \(n\) 个点的树和一个常数 \(k\) , 对于每个 \(i\) , 求 \[\displaystyle S(i) = \sum _{j=1} ^ {n} \mathrm{dist ...
- 【bzoj2159】Crash 的文明世界(树形dp+第二类斯特林数)
传送门 题意: 给出一颗\(n\)个结点的树,对于每个结点输出其答案,每个结点的答案为\(ans_x=\sum_{i=1}^ndis(x,i)^k\). 思路: 我们对于每个结点将其答案展开: \[ ...
- 【hdu4045】Machine scheduling(dp+第二类斯特林数)
传送门 题意: 从\(n\)个人中选\(r\)个出来,但每两个人的标号不能少于\(k\). 再将\(r\)个人分为不超过\(m\)个集合. 问有多少种方案. 思路: 直接\(dp\)预处理出从\(n\ ...
- bzoj 2159 Crash 的文明世界 && hdu 4625 JZPTREE ——第二类斯特林数+树形DP
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2159 学习材料:https://blog.csdn.net/litble/article/d ...
- HDU - 4625 JZPTREE(第二类斯特林数+树DP)
https://vjudge.net/problem/HDU-4625 题意 给出一颗树,边权为1,对于每个结点u,求sigma(dist(u,v)^k). 分析 贴个官方题解 n^k并不好转移,于是 ...
- P4827 [国家集训队] Crash 的文明世界(第二类斯特林数+树形dp)
传送门 对于点\(u\),所求为\[\sum_{i=1}^ndis(i,u)^k\] 把后面那堆东西化成第二类斯特林数,有\[\sum_{i=1}^n\sum_{j=0}^kS(k,j)\times ...
- BZOJ 2159: Crash 的文明世界(组合数学+第二类斯特林数+树形dp)
传送门 解题思路 比较有意思的一道数学题.首先\(n*k^2\)的做法比较好想,就是维护一个\(x^i\)这种东西,然后转移的时候用二项式定理拆开转移.然后有一个比较有意思的结论就是把求\(x^i\) ...
- Codeforces Round #100 E. New Year Garland (第二类斯特林数+dp)
题目链接: http://codeforces.com/problemset/problem/140/E 题意: 圣诞树上挂彩球,要求从上到下挂\(n\)层彩球.已知有\(m\)种颜色的球,球的数量不 ...
- 国家集训队 Crash 的文明世界(第二类斯特林数+换根dp)
题意 题目链接:https://www.luogu.org/problem/P4827 给定一棵 \(n\) 个节点的树和一个常数 \(k\) ,对于树上的每一个节点 \(i\) ,求出 \( ...
- 【BZOJ2159】Crash的文明世界(第二类斯特林数,动态规划)
[BZOJ2159]Crash的文明世界(第二类斯特林数,动态规划) 题面 BZOJ 洛谷 题解 看到\(k\)次方的式子就可以往二项式的展开上面考,但是显然这样子的复杂度会有一个\(O(k^2)\) ...
随机推荐
- [C# ASP.NET]如何让IIS Express支持外部(局域网)连接
声明:本文为www.cnc6.cn原创,转载时请注明出处,谢谢! 一.搭建环境: 1.系统:Win10 1809 2.IDE:Visual Studio 2017 3.Framework: 4.6.1 ...
- nginx 之 proxy_redirect详解
proxy_redirect 语法:proxy_redirect [ default|off|redirect replacement ] 默认值:proxy_redirect default 使 ...
- NFV组播实验对照
一 论文题目:Approximation and Online Algorithms for NFV-Enabled Multicasting in SDNs 发表时间:2017 期刊来源:Inter ...
- ElasticSearch 入门
http://www.oschina.net/translate/elasticsearch-getting-started?cmp ElasticSearch 简单入门 返回原文英文原文:Getti ...
- 在IDEA中配置Spring的XML装配
不考虑混合模式的话,Spring有三类装配Bean的方法,自动装配和Java代码装配都会很容易上手,但在弄XML装配时遇到了问题,这与IDEA环境有关. 装配时需要在源码中配置XML文件的位置,我看别 ...
- gnuplot画折线图
之前尝试用jfreechart画自定义横坐标的折线图或时序图,发现很复杂,后来改用gnuplot了. gnuplot在网上一搜就能找到下载地址. 安装完成后,主要是命令行形式的交互界面,至少比jfre ...
- Python之拆分目录
成分目录的好习惯,使得代码保持整洁,为以后的代码管理提供方便. 一.概念 一般目录有以下几个: bin:程序入口,存放start文件. conf:存放固定的配置信息,比如:连接redis的配置信息.连 ...
- CodeForces Round #548 Div2
http://codeforces.com/contest/1139 A. Even Substrings You are given a string s=s1s2…sns=s1s2…sn of l ...
- jmeter内存溢出解决办法
原文:http://blog.51cto.com/xqtesting/2107927 使用jmeter进行压力测试时遇到一段时间后报内存溢出outfmenmory错误,导致jmeter卡死了,先尝试在 ...
- vue组件内部引入远程js文件
之所以要做这个是因为,在一个组件内部需要引入一个js文件来定位.如果放在index.html,这样每个组件都会有这个js.所以需要在组件内单独引入. 第一种操作 Dom引入js: export def ...