Loj 6068. 「2017 山东一轮集训 Day4」棋盘
Loj 6068. 「2017 山东一轮集训 Day4」棋盘
题目描述
给定一个 $ n \times n $ 的棋盘,棋盘上每个位置要么为空要么为障碍。定义棋盘上两个位置 $ (x, y),(u, v) $ 能互相攻击当前仅当满足以下两个条件:
- $ x = u $ 或 $ y = v $
- 对于 $ (x, y) $ 与 $ (u, v) $ 之间的所有位置,均不是障碍。
现在有 $ q $ 个询问,每个询问给定 $ k_i $,要求从棋盘中选出 $ k_i $ 个空位置来放棋子,问最少互相能攻击到的棋子对数是多少?
输入格式
第一行一个整数 $ n $。
接下来输入一个 $ n \times n $ 的字符矩阵,一个位置若为 .
,则表示这是一个空位置,若为 #
,则为障碍。
第 $ n + 2 $ 行输入一个整数 $ q $ 代表询问个数。
接下来 $ q $ 行,每行一个整数 $ k $,代表要放的棋子个数。
样例
样例输入
4
..#.
####
..#.
..#.
1
7
样例输出
2
数据范围与提示
对于 $ 20% $ 的数据,$ n \leq 5 $;
对于 $ 40% $ 的数据,$ n \leq 10 $;
另外有 $ 20% $ 的数据,$ q = 1 $;
对于 $ 100% $ 的数据,$ n \leq 50; q \leq 10000; k \leq $ 棋盘中空位置数量。
感觉对这种棋盘类的题不太熟啊!
这种棋盘上填棋子的题大概率是网络流之类的东西。
棋盘建图的一般套路就是:将每个行连通块和列连通块拿出来,分别于源点和汇点连边,对于每个\((x,y)\),有该点所在的行连通块向列连通块连边,流量为\(1\),表示这个位置可以放一个棋子。
然后这道题同一行/列可以放多个棋子,于是源点到某一个连通块连多条边。边权为差分值\(\frac{i\cdot(i+1)}{2}-\frac{i\cdot (i-1)}{2}=i\)。然后发现他的增量是单调递增的,所以直接费用流不会出问题。汇点同理。
代码:
#include<bits/stdc++.h>
#define ll long long
#define N 55
using namespace std;
inline int Get() {int x=0,f=1;char ch=getchar();while(ch<'0'||ch>'9') {if(ch=='-') f=-1;ch=getchar();}while('0'<=ch&&ch<='9') {x=(x<<1)+(x<<3)+ch-'0';ch=getchar();}return x*f;}
int n;
char mp[N][N];
int S,T;
struct road {
int to,next;
int flow,c;
}s[1200010];
int h[N*N],cnt=1;
void add(int i,int j,int f,int c) {
// cout<<"fr="<<i<<" to="<<j<<" flow="<<f<<" cost="<<c<<"\n";
s[++cnt]=(road) {j,h[i],f,c};h[i]=cnt;
s[++cnt]=(road) {i,h[j],0,-c};h[j]=cnt;
}
int tot;
int hbel[N][N],lbel[N][N];
int res;
bool vis[N*N];
queue<int>q;
int dis[N*N];
int ans[N*N],now;
int fr[N*N],e[N*N];
bool in[N*N];
int mx;
bool spfa() {
memset(dis,0x3f,sizeof(dis));
dis[0]=0;
q.push(S);
while(!q.empty()) {
int v=q.front();q.pop();
in[v]=0;
for(int i=h[v];i;i=s[i].next) {
int to=s[i].to;
if(s[i].flow&&dis[to]>dis[v]+s[i].c) {
dis[to]=dis[v]+s[i].c;
fr[to]=v;
e[to]=i;
if(!in[to]) in[to]=1,q.push(to);
}
}
}
if(dis[T]>1e9) return 0;
for(int i=T;i;i=fr[i]) {
s[e[i]].flow--;
s[e[i]^1].flow++;
}
now++;
ans[now]=ans[now-1]+dis[T];
if(now==mx) return 0;
return 1;
}
vector<int>que;
int size[N*N];
int main() {
n=Get();
for(int i=1;i<=n;i++) scanf("%s",mp[i]+1);
for(int i=1;i<=n;i++) {
for(int j=1;j<=n;j++) {
if(mp[i][j]=='#') continue ;
res++;
if(mp[i][j-1]!='.') hbel[i][j]=++tot;
else hbel[i][j]=hbel[i][j-1];
}
}
for(int j=1;j<=n;j++) {
for(int i=1;i<=n;i++) {
if(mp[i][j]=='#') continue ;
if(mp[i-1][j]!='.') lbel[i][j]=++tot;
else lbel[i][j]=lbel[i-1][j];
}
}
for(int i=1;i<=n;i++)
for(int j=1;j<=n;j++)
size[hbel[i][j]]++,size[lbel[i][j]]++;
S=0,T=tot+1;
for(int i=1;i<=n;i++) {
for(int j=1;j<=n;j++) {
if(mp[i][j]!='.') continue ;
if(hbel[i][j]!=hbel[i][j-1]) {
for(int q=1;q<=size[hbel[i][j]];q++) add(S,hbel[i][j],1,q-1);
}
if(lbel[i][j]!=lbel[i-1][j]) {
for(int q=1;q<=size[lbel[i][j]];q++) add(lbel[i][j],T,1,q-1);
}
add(hbel[i][j],lbel[i][j],1,0);
}
}
int Q=Get();
for(int i=0;i<Q;i++) {
int a=Get();
mx=max(mx,a);
que.push_back(a);
}
while(spfa());
for(int i=0;i<Q;i++) cout<<ans[que[i]]<<"\n";
return 0;
}
Loj 6068. 「2017 山东一轮集训 Day4」棋盘的更多相关文章
- [LOJ#6068]. 「2017 山东一轮集训 Day4」棋盘[费用流]
题意 题目链接 分析 考虑每个棋子对对应的横向纵向的极大区间的影响:记之前这个区间中的点数为 \(x\) ,那么此次多配对的数量即 \(x\) . 考虑费用流,\(S\rightarrow 横向区间 ...
- LOJ 6068「2017 山东一轮集训 Day4」棋盘
题意 一个 \(n\times n\) 的棋盘上面有若干障碍物. 定义两个棋子可以互相攻击当且仅当这两个棋子的横坐标或纵坐标相等而且中间不能隔着障碍物.(可以隔棋子) 有 \(q\) 次询问,每次询问 ...
- Loj #6069. 「2017 山东一轮集训 Day4」塔
Loj #6069. 「2017 山东一轮集训 Day4」塔 题目描述 现在有一条 $ [1, l] $ 的数轴,要在上面造 $ n $ 座塔,每座塔的坐标要两两不同,且为整点. 塔有编号,且每座塔都 ...
- loj6068. 「2017 山东一轮集训 Day4」棋盘 二分图,网络流
loj6068. 「2017 山东一轮集训 Day4」棋盘 链接 https://loj.ac/problem/6068 思路 上来没头绪,后来套算法,套了个网络流 经典二分图 左边横,右边列 先重新 ...
- 「2017 山东一轮集训 Day4」棋盘(费用流)
棋盘模型 + 动态加边 #include<cstdio> #include<algorithm> #include<iostream> #include<cs ...
- Loj #6073.「2017 山东一轮集训 Day5」距离
Loj #6073.「2017 山东一轮集训 Day5」距离 Description 给定一棵 \(n\) 个点的边带权的树,以及一个排列$ p\(,有\)q $个询问,给定点 \(u, v, k\) ...
- LOJ #6074. 「2017 山东一轮集训 Day6」子序列
#6074. 「2017 山东一轮集训 Day6」子序列 链接 分析: 首先设f[i][j]为到第i个点,结尾字符是j的方案数,这个j一定是从i往前走,第一个出现的j,因为这个j可以代替掉前面所有j. ...
- loj #6077. 「2017 山东一轮集训 Day7」逆序对
#6077. 「2017 山东一轮集训 Day7」逆序对 题目描述 给定 n,k n, kn,k,请求出长度为 n nn 的逆序对数恰好为 k kk 的排列的个数.答案对 109+7 10 ^ 9 ...
- LOJ #6119. 「2017 山东二轮集训 Day7」国王
Description 在某个神奇的大陆上,有一个国家,这片大陆的所有城市间的道路网可以看做是一棵树,每个城市要么是工业城市,要么是农业城市,这个国家的人认为一条路径是 exciting 的,当且仅当 ...
随机推荐
- 《Office 365开发入门指南》上市说明和读者服务
写在最开始的话 拙作<Office 365开发入门指南>上周开始已经正式在各大书店.在线商城上市,欢迎对Office 365的开发.生态感兴趣的开发者.项目经理.产品经理参考本书,全面了解 ...
- .Net Core 使用 System.Drawing.Common 部署到CentOS上遇到的问题
一开始报这个错误:Unable to load shared library 'libdl' 找到libdl安装位置是/usr/lib64: #locate libdl /usr/lib64/libd ...
- SVN服务器本地搭建与使用
转载请注明原文地址:http://www.cnblogs.com/ygj0930/p/6623026.html 使用SVN进行代码管理,需要搭建服务端资源库,然后在使用SVN的电脑安装SVN客户端或 ...
- mybatis_12延时加载_懒加载
延时加载:也叫懒加载 2.1 延迟加载 延迟加载又叫懒加载,也叫按需加载.也就是说先加载主信息,在需要的时候,再去加载从信息. 在mybatis中,resultMap标签 的association标签 ...
- Java学习笔记之——自动装箱与拆箱
自动装箱与拆箱 基本类型与引用类型的互相转换 1. 基本类型对应的包装类 byte short char int long flaot double ...
- js发送邮件确定email地址
<a href="mailto:wjl@tom.com?subject=aaa&body=11111">test</a>
- Springboot整合Websocket遇到的坑
Springboot整合Websocket遇到的坑 一.使用Springboot内嵌的tomcat启动websocket 1.添加ServerEndpointExporter配置bean @Confi ...
- 你还在等着用户反馈BUG?
译者按: 等待用户反馈BUG,一切都晚了!实时监控线上应用才是王道. 原文: Why relying on your users to report errors is the dumbest thi ...
- 一个优秀的SEOer必须掌握的三大标配技术
首先,认识网页代码是基础 这里所讲的网页代码是指HTML代码,并不是指复杂的PHP模板技术.一般的培训机构总是提倡学SEO不用学网页代码,只要会购买域名空间搭建网站就行,因为现在的网站模板太丰富了,对 ...
- Django之模板
Django模板系统 官方文档 常用语法 Django模板中只需要记两种特殊符号: {{ }}和 {% %} {{ }}表示变量,在模板渲染的时候替换成值,{% %}表示逻辑相关的操作. 变量 {{ ...