我们继续采取简单的策略,这次模拟实际交易。这个想法很简单:

  • 如果调整后的收盘价高于SMA(15),我们将进入多头仓位(我们下单买入市价)。
  • 如果调整后的收盘价低于SMA(15),我们退出多头头寸(我们出售)
from pyalgotrade import strategy
from pyalgotrade.barfeed import yahoofeed
from pyalgotrade.technical import ma class MyStrategy(strategy.BacktestingStrategy):
def __init__(self, feed, instrument, smaPeriod):
super(MyStrategy, self).__init__(feed, 1000)
self.__position = None
self.__instrument = instrument
# We'll use adjusted close values instead of regular close values.
self.setUseAdjustedValues(True)
self.__sma = ma.SMA(feed[instrument].getPriceDataSeries(), smaPeriod) def onEnterOk(self, position):
execInfo = position.getEntryOrder().getExecutionInfo()
self.info("BUY at $%.2f" % (execInfo.getPrice())) def onEnterCanceled(self, position):
self.__position = None def onExitOk(self, position):
execInfo = position.getExitOrder().getExecutionInfo()
self.info("SELL at $%.2f" % (execInfo.getPrice()))
self.__position = None def onExitCanceled(self, position):
# If the exit was canceled, re-submit it.
self.__position.exitMarket() def onBars(self, bars):
# Wait for enough bars to be available to calculate a SMA.
if self.__sma[-1] is None:
return bar = bars[self.__instrument]
# If a position was not opened, check if we should enter a long position.
if self.__position is None:
if bar.getPrice() > self.__sma[-1]:
# Enter a buy market order for 10 shares. The order is good till canceled.
self.__position = self.enterLong(self.__instrument, 10, True)
# Check if we have to exit the position.
elif bar.getPrice() < self.__sma[-1] and not self.__position.exitActive():
self.__position.exitMarket() def run_strategy(smaPeriod):
# Load the yahoo feed from the CSV file
feed = yahoofeed.Feed()
feed.addBarsFromCSV("orcl", "orcl-2000.csv") # Evaluate the strategy with the feed.
myStrategy = MyStrategy(feed, "orcl", smaPeriod)
myStrategy.run()
print "Final portfolio value: $%.2f" % myStrategy.getBroker().getEquity() run_strategy(15)

运行策略后看到如下结果

2000-01-26 00:00:00 strategy [INFO] BUY at $27.26
2000-01-28 00:00:00 strategy [INFO] SELL at $24.74
2000-02-03 00:00:00 strategy [INFO] BUY at $26.60
2000-02-22 00:00:00 strategy [INFO] SELL at $28.40
2000-02-23 00:00:00 strategy [INFO] BUY at $28.91
2000-03-31 00:00:00 strategy [INFO] SELL at $38.51
2000-04-07 00:00:00 strategy [INFO] BUY at $40.19
2000-04-12 00:00:00 strategy [INFO] SELL at $37.44
2000-04-19 00:00:00 strategy [INFO] BUY at $37.76
2000-04-20 00:00:00 strategy [INFO] SELL at $35.45
2000-04-28 00:00:00 strategy [INFO] BUY at $37.70
2000-05-05 00:00:00 strategy [INFO] SELL at $35.54
2000-05-08 00:00:00 strategy [INFO] BUY at $36.17
2000-05-09 00:00:00 strategy [INFO] SELL at $35.39
2000-05-16 00:00:00 strategy [INFO] BUY at $37.28
2000-05-19 00:00:00 strategy [INFO] SELL at $34.58
2000-05-31 00:00:00 strategy [INFO] BUY at $35.18
2000-06-23 00:00:00 strategy [INFO] SELL at $38.81
2000-06-27 00:00:00 strategy [INFO] BUY at $39.56
2000-06-28 00:00:00 strategy [INFO] SELL at $39.42
2000-06-29 00:00:00 strategy [INFO] BUY at $39.41
2000-06-30 00:00:00 strategy [INFO] SELL at $38.60
2000-07-03 00:00:00 strategy [INFO] BUY at $38.96
2000-07-05 00:00:00 strategy [INFO] SELL at $36.89
2000-07-21 00:00:00 strategy [INFO] BUY at $37.19
2000-07-24 00:00:00 strategy [INFO] SELL at $37.04
2000-07-26 00:00:00 strategy [INFO] BUY at $35.93
2000-07-28 00:00:00 strategy [INFO] SELL at $36.08
2000-08-01 00:00:00 strategy [INFO] BUY at $36.11
2000-08-02 00:00:00 strategy [INFO] SELL at $35.06
2000-08-04 00:00:00 strategy [INFO] BUY at $37.61
2000-09-11 00:00:00 strategy [INFO] SELL at $41.34
2000-09-29 00:00:00 strategy [INFO] BUY at $39.07
2000-10-02 00:00:00 strategy [INFO] SELL at $38.30
2000-10-20 00:00:00 strategy [INFO] BUY at $34.71
2000-10-31 00:00:00 strategy [INFO] SELL at $31.34
2000-11-20 00:00:00 strategy [INFO] BUY at $23.35
2000-11-21 00:00:00 strategy [INFO] SELL at $23.83
2000-12-01 00:00:00 strategy [INFO] BUY at $25.33
2000-12-21 00:00:00 strategy [INFO] SELL at $26.72
2000-12-22 00:00:00 strategy [INFO] BUY at $29.17
Final portfolio value: $979.44

如果调整sma的测试周期,讲得到不一样的结果

for i in range(10, 30):
run_strategy(i)

我们发现sma(20)的结果最好

Final portfolio value: $1075.38

作者:readilen
链接:http://www.jianshu.com/p/3ac363f931d3
來源:简书
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。

PyalgoTrade 交易(五)的更多相关文章

  1. 使用metamask钱包

    一.安装火狐浏览器metamask插件 打开火狐浏览器的附件组件,搜索metamask 点击第一个 点击“添加到Firefox” 添加成功后,浏览器右上角有一个狐狸标志 点击这个标志,打开插件 二.创 ...

  2. 量化投资学习笔记01——初识Pyalgotrade量化交易回测框架

    年初学习量化投资,一开始想自己从头写,还是受了C/C++的影响.结果困在了计算回测数据那里,结果老也不对,就暂时放下了.最近试了一下python的各个量化投资框架,发现一个能用的——pyalgotra ...

  3. Hyperledger Fabric——balance transfer(五)执行交易

    链码安装和实例化之后就可以调用chaincode执行交易,下面分析简单的账户转账操作是如何完成的. 源码分析 1.首先看app.js的路由函数 app.post('/channels/:channel ...

  4. [转载]五种常见的电子商务模式对比:B2B、B2C、C2B、C2C、O2O

    转载自http://blog.sina.com.cn/s/blog_64e090b001016843.html 转载自http://blog.sina.com.cn/s/blog_64e090b001 ...

  5. python之信用卡ATM(第五天)

    本节作业 作业需求: 模拟实现一个ATM + 购物商城程序 额度 15000或自定义 实现购物商城,买东西加入 购物车,调用信用卡接口结账 可以提现,手续费5% 每月22号出账单,每月10号为还款日, ...

  6. 五种常见的电子商务模式对比:B2B、B2C、C2B、C2C、O2O

    电子商务模式是指企业运用互联网开展经营取得营业收入的基本方式,也就是指在网络环境中基于一定技术基础的商务运作方式和盈利模式.目前,常见的电子商务模式主要有B2B.B2C.C2B.C2C.O2O等几种, ...

  7. 关于优化C#程序的五十种方法

    一.用属性代替可访问的字段 1..NET数据绑定只支持数据绑定,使用属性可以获得数据绑定的好处: 2.在属性的get和set访问器重可使用lock添加多线程的支持. 二.readonly(运行时常量) ...

  8. ETL构建数据仓库五步法

    原文:http://huangy82.blog.163.com/blog/static/49069827200923034638409/ ETL构建企业级数据仓库五步法 在数据仓库构建中,ETL贯穿于 ...

  9. 监控 DNS 流量,预防安全隐患五大招!

    尽管 IT 管理员尽心尽责地监控设备.主机和网络是否存在恶意活动的迹象,却往往出力不讨好.主机入侵检测和端点保护对很多公司来说可能是"必需"的安全措施,但如果要找出 RAT.roo ...

随机推荐

  1. DOM2和DOM3读书笔记

    二刷<高程>做的笔记,没什么技术含量就不发到首页啦!~DOM1级主要定义HTML和XML文档底层结构,DOM2和DOM3在这个结构基础上引入更多交互能力,也支持更高级的XML特性.DOM2 ...

  2. HDU4135Co-prime(容斥原理)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4135 题目解析: 给你一个闭区间[A,B](1 <= A <= B <= 1015) ...

  3. 有关Oracle统计信息的知识点

    一.什么是统计信息 统计信息主要是描述数据库中表,索引的大小,规模,数据分布状况等的一类信息.例如,表的行数,块数,平均每行的大小,索引的leaf blocks,索引字段的行数,不同值的大小等,都属于 ...

  4. OpenResty--mysql,redis 项目中的应用

    最近刚刚接手同事的OpenResty的项目,发现对mysql,redis的操作没有用连接池,故对此进行了改造. MYSQL 主要是通过mysql_pool.lua 和 dbutil.lua 来封装对数 ...

  5. Mysql 数据库系列

    阅读目录 第一篇:  数据库初识 第二篇:  库操作 第三篇:  存储引擎 第四篇:  表操作 第五篇:  数据操作 第六篇:  索引原理与慢查询优化 第七篇:  数据备份 pymysql模块 第八篇 ...

  6. make clean 与 make distclean 的区别

    make clean仅仅是清除之前编译的可执行文件及配置文件. 而make distclean要清除所有生成的文件. Makefile 在符合GNU Makefiel惯例的Makefile中,包含了一 ...

  7. 2018-2019 Russia Open High School Programming Contest

    A. Company Merging Solved. 温暖的签到. #include<bits/stdc++.h> using namespace std; ; typedef long ...

  8. WebStorm下使用TypeScript

    TypeScript也可使用Visual Studio 进行开发 TypeScript官网地址:(http://www.typescriptlang.org/) 1.先安装WebStorm WebSt ...

  9. Python3.x:生成器简介

    Python3.x:生成器简介 概念 任何使用yield的函数都称之为生成器:使用yield,可以让函数生成一个序列,该函数返回的对象类型是"generator",通过该对象连续调 ...

  10. 20145319 《网络渗透》MSF基础应用

    20145319 <网络渗透>MSF基础应用 一 实验链接 渗透实验一:MS08_067渗透实验 渗透实验二:MS11_050渗透实验 渗透实验三:Adobe阅读器渗透实验 渗透实验四:M ...