python轻量级ORM---peewee
版权声明:本文为博主原创文章,未经博主同意不得转载。 https://blog.csdn.net/q454684431/article/details/31742367
peewee是一个轻量级的ORM。用的是大名鼎鼎的sqlalchemy内核,採用纯python编写,显得十分轻便。为了兴许方便查看,在这里简单记录下~~
peewee不仅轻量级。还提供了多种数据库的訪问,如SqliteDatabase(file
or memory)、MYSQLDatabase、PostgresqlDatabase;
接下来就从API上路吧~~~
1.
class fn---To express functions in peewee, use the fn object。
For example:
Peewee expression | Equivalent SQL |
---|---|
fn.Count(Tweet.id).alias('count') | Count(t1."id") AS count |
fn.Lower(fn.Substr(User.username, 1, 1)) | Lower(Substr(t1."username", 1, 1)) |
fn.Rand().alias('random') | Rand() AS random |
fn.Stddev(Employee.salary).alias('sdv') | Stddev(t1."salary") AS sdv |
Functions can be used as any part of a query:
select
where
group_by
order_by
having
update query
insert query
# user's username starts with a 'g' or a 'G':
fn.Lower(fn.Substr(User.username, 1, 1)) == 'g'
2.表达式支持的操作符
a:
Comparison | Meaning |
---|---|
== | x equals y |
< | x is less than y |
<= | x is less than or equal to y |
> | x is greater than y |
>= | x is greater than or equal to y |
!= | x is not equal to y |
<< | x IN y, where y is a list or query |
>> | x IS y, where y is None/NULL |
% | x LIKE y where y may contain wildcards |
** | x ILIKE y where y may contain wildcards |
b:
Employee.select().where(Employee.salary.between(50000, 60000))
note: 因为sqlite的like函数在默认下是大写和小写不敏感的。假设想实现大写和小写搜索,须要用’*‘做通配符。
3.实现用户自己定义的操作
Here is how you might add support for modulo and regexp in SQLite:
from peewee import *
from peewee import Expression # the building block for expressions
OP_MOD = 'mod'
OP_REGEXP = 'regexp'
def mod(lhs, rhs):
return Expression(lhs, OP_MOD, rhs)
def regexp(lhs, rhs):
return Expression(lhs, OP_REGEXP, rhs)
SqliteDatabase.register_ops({OP_MOD: '%', OP_REGEXP: 'REGEXP'}) #加入 %、regexp操作
Now you can use these custom operators to build richer queries:
# users with even ids
User.select().where(mod(User.id, 2) == 0)
# users whose username starts with a number
User.select().where(regexp(User.username, '[0-9].*'))
4.Joining tables
There are three types of joins by default:
JOIN_INNER (default)
JOIN_LEFT_OUTER
JOIN_FULL
Here are some examples:
User.select().join(Blog).where(
(User.is_staff == True) & (Blog.status == LIVE))
Blog.select().join(User).where(
(User.is_staff == True) & (Blog.status == LIVE))
subquery:
staff = User.select().where(User.is_staff == True)
Blog.select().where(
(Blog.status == LIVE) & (Blog.user << staff))
补充:在没有通过ForeignKeyField产生外键的多个models中,也能够做join操作。如:
# No explicit foreign key between these models.
OutboundShipment.select().join(InboundShipment, on=(
OutboundShipment.barcode == InboundShipment.barcode))
5.Performing advanced queries
To create arbitrarily complex queries, simply use python’s bitwise “and” and “or” operators:
sq = User.select().where(
(User.is_staff == True) |
(User.is_superuser == True))
The WHERE clause will look something like:
WHERE (is_staff = ? OR is_superuser = ?)
In order to negate an expression, use the bitwise “invert” operator:
staff_users = User.select().where(User.is_staff == True)
Tweet.select().where(
~(Tweet.user << staff_users))
This query generates roughly the following SQL:
SELECT t1.* FROM blog AS t1
WHERE
NOT t1.user_id IN (
SELECT t2.id FROM user AS t2 WHERE t2.is_staff = ?)
Rather complex lookups are possible:
sq = User.select().where(
((User.is_staff == True) | (User.is_superuser == True)) &
(User.join_date >= datetime(2009, 1, 1))
This generates roughly the following SQL:
SELECT * FROM user
WHERE (
(is_staff = ? OR is_superuser = ?) AND
(join_date >= ?
))
6.Aggregating records
#Suppose you have some users and want to get a list of them along with the count of tweets each has made. First I will show y#ou the shortcut:
query = User.select().annotate(Tweet)
This is equivalent to the following:
query = User.select(
User, fn.Count(Tweet.id).alias('count')
).join(Tweet).group_by(User)
#You can also specify a custom aggregator. In the following query we will annotate the users with the date of their most rece#nt tweet:
query = User.select().annotate(
Tweet, fn.Max(Tweet.created_date).alias('latest'))
#Conversely, sometimes you want to perform an aggregate query that returns a scalar value, like the “max id”. Queries like #this can be executed by using the aggregate() method:
most_recent_tweet = Tweet.select().aggregate(fn.Max(Tweet.created_date))
7.Window functions
#peewee comes with basic support for SQL window functions, which can be created by calling fn.over() and passing in your parti#tioning or ordering parameters.
# Get the list of employees and the average salary for their dept.
query = (Employee
.select(
Employee.name,
Employee.department,
Employee.salary,
fn.Avg(Employee.salary).over(
partition_by=[Employee.department]))
.order_by(Employee.name))
# Rank employees by salary.
query = (Employee
.select(
Employee.name,
Employee.salary,
fn.rank().over(
order_by=[Employee.salary])))
有待继续考究啊~~ click me:<a target=_blank href="http://www.postgresql.org/docs/9.1/static/tutorial-window.html">postgresql docs.</a>
8.How to optimize a query?
#We can do this pretty easily:
for tweet in Tweet.select().order_by(Tweet.created_date.desc()).limit(10):
print '%s, posted on %s' % (tweet.message, tweet.user.username)
#Looking at the query log, though, this will cause 11 queries:
#1 query for the tweets
#1 query for every related user (10 total)
#This can be optimized into one query very easily, though:
tweets = Tweet.select(Tweet, User).join(User)
for tweet in tweets.order_by(Tweet.created_date.desc()).limit(10):
print '%s, posted on %s' % (tweet.message, tweet.user.username)
#Will cause only one query that looks something like this:
SELECT t1.id, t1.message, t1.user_id, t1.created_date, t2.id, t2.username
FROM tweet AS t1
INNER JOIN user AS t2
ON t1.user_id = t2.id
ORDER BY t1.created_date desc
LIMIT 10
<span style="font-family: Consolas, 'Andale Mono WT', 'Andale Mono', 'Lucida Console', 'Lucida Sans Typewriter', 'DejaVu Sans Mono', 'Bitstream Vera Sans Mono', 'Liberation Mono', 'Nimbus Mono L', Monaco, 'Courier New', Courier, monospace; font-size: 18px; line-height: 1.5; background-color: rgb(255, 255, 255);"></span><h3 style="box-sizing: border-box; margin-top: 0px; font-family: 'Roboto Slab', ff-tisa-web-pro, Georgia, Arial, sans-serif; font-size: 20px; color: rgb(64, 64, 64); background-color: rgb(252, 252, 252);">Speeding up simple select queries---naive</h3><p style="box-sizing: border-box; line-height: 24px; margin-top: 0px; margin-bottom: 24px; font-size: 16px; color: rgb(64, 64, 64); font-family: Lato, proxima-nova, 'Helvetica Neue', Arial, sans-serif; background-color: rgb(252, 252, 252);">Complex select queries can get a performance boost (especially when iterating over large result sets) by calling <a target=_blank class="reference internal" href="http://peewee.readthedocs.org/en/latest/peewee/api.html#SelectQuery.naive" title="SelectQuery.naive" style="box-sizing: border-box; color: rgb(155, 89, 182); text-decoration: none;"><tt class="xref py py-meth docutils literal" style="box-sizing: border-box; font-family: Consolas, 'Andale Mono WT', 'Andale Mono', 'Lucida Console', 'Lucida Sans Typewriter', 'DejaVu Sans Mono', 'Bitstream Vera Sans Mono', 'Liberation Mono', 'Nimbus Mono L', Monaco, 'Courier New', Courier, monospace; font-size: 12px; white-space: nowrap; max-width: 100%; background-color: rgb(255, 255, 255); border: 1px solid rgb(225, 228, 229); padding: 0px 5px; color: rgb(41, 128, 185); overflow-x: auto; background-position: initial initial; background-repeat: initial initial;"><span class="pre" style="box-sizing: border-box;"><strong>naive()</strong></span></tt></a>. This method simply patches all attributes directly from the cursor onto the model. For simple queries this will have no noticeable impact. The <span style="box-sizing: border-box;">only</span> difference is when multiple tables are queried, as in the previous example:</p><div class="highlight-python" style="box-sizing: border-box; border: 1px solid rgb(225, 228, 229); padding: 0px; overflow-x: auto; margin: 1px 0px 24px; color: rgb(64, 64, 64); font-family: Lato, proxima-nova, 'Helvetica Neue', Arial, sans-serif; font-size: 16px;"><div class="highlight" style="box-sizing: border-box; border: none; padding: 0px; overflow-x: auto; background-image: none; margin: 0px; background-position: initial initial; background-repeat: initial initial;"><pre style="box-sizing: border-box; font-family: Consolas, 'Andale Mono WT', 'Andale Mono', 'Lucida Console', 'Lucida Sans Typewriter', 'DejaVu Sans Mono', 'Bitstream Vera Sans Mono', 'Liberation Mono', 'Nimbus Mono L', Monaco, 'Courier New', Courier, monospace; font-size: 12px; margin-top: 0px; margin-bottom: 0px; padding: 12px; line-height: 1.5; overflow: auto;"><span class="c" style="box-sizing: border-box; color: rgb(153, 153, 136); font-style: italic;"># above example</span>
<span class="n" style="box-sizing: border-box; color: rgb(51, 51, 51);">tweets</span> <span class="o" style="box-sizing: border-box; font-weight: bold;">=</span> <span class="n" style="box-sizing: border-box; color: rgb(51, 51, 51);">Tweet</span><span class="o" style="box-sizing: border-box; font-weight: bold;">.</span><span class="n" style="box-sizing: border-box; color: rgb(51, 51, 51);">select</span><span class="p" style="box-sizing: border-box;">(</span><span class="n" style="box-sizing: border-box; color: rgb(51, 51, 51);">Tweet</span><span class="p" style="box-sizing: border-box;">,</span> <span class="n" style="box-sizing: border-box; color: rgb(51, 51, 51);">User</span><span class="p" style="box-sizing: border-box;">)</span><span class="o" style="box-sizing: border-box; font-weight: bold;">.</span><span class="n" style="box-sizing: border-box; color: rgb(51, 51, 51);">join</span><span class="p" style="box-sizing: border-box;">(</span><span class="n" style="box-sizing: border-box; color: rgb(51, 51, 51);">User</span><span class="p" style="box-sizing: border-box;">)</span>
<span class="k" style="box-sizing: border-box; font-weight: bold;">for</span> <span class="n" style="box-sizing: border-box; color: rgb(51, 51, 51);">tweet</span> <span class="ow" style="box-sizing: border-box; font-weight: bold;">in</span> <span class="n" style="box-sizing: border-box; color: rgb(51, 51, 51);">tweets</span><span class="o" style="box-sizing: border-box; font-weight: bold;">.</span><span class="n" style="box-sizing: border-box; color: rgb(51, 51, 51);">order_by</span><span class="p" style="box-sizing: border-box;">(</span><span class="n" style="box-sizing: border-box; color: rgb(51, 51, 51);">Tweet</span><span class="o" style="box-sizing: border-box; font-weight: bold;">.</span><span class="n" style="box-sizing: border-box; color: rgb(51, 51, 51);">created_date</span><span class="o" style="box-sizing: border-box; font-weight: bold;">.</span><span class="n" style="box-sizing: border-box; color: rgb(51, 51, 51);">desc</span><span class="p" style="box-sizing: border-box;">())</span><span class="o" style="box-sizing: border-box; font-weight: bold;">.</span><span class="n" style="box-sizing: border-box; color: rgb(51, 51, 51);">limit</span><span class="p" style="box-sizing: border-box;">(</span><span class="mi" style="box-sizing: border-box; color: rgb(0, 153, 153);">10</span><span class="p" style="box-sizing: border-box;">):</span>
<span class="k" style="box-sizing: border-box; font-weight: bold;">print</span> <span class="s" style="box-sizing: border-box; color: rgb(221, 17, 68);">'</span><span class="si" style="box-sizing: border-box; color: rgb(221, 17, 68);">%s</span><span class="s" style="box-sizing: border-box; color: rgb(221, 17, 68);">, posted on </span><span class="si" style="box-sizing: border-box; color: rgb(221, 17, 68);">%s</span><span class="s" style="box-sizing: border-box; color: rgb(221, 17, 68);">'</span> <span class="o" style="box-sizing: border-box; font-weight: bold;">%</span> <span class="p" style="box-sizing: border-box;">(</span><span class="n" style="box-sizing: border-box; color: rgb(51, 51, 51);">tweet</span><span class="o" style="box-sizing: border-box; font-weight: bold;">.</span><span class="n" style="box-sizing: border-box; color: rgb(51, 51, 51);">message</span><span class="p" style="box-sizing: border-box;">,</span> <span class="n" style="box-sizing: border-box; color: rgb(51, 51, 51);">tweet</span><span class="o" style="box-sizing: border-box; font-weight: bold;">.</span><span class="n" style="box-sizing: border-box; color: rgb(51, 51, 51);">user</span><span class="o" style="box-sizing: border-box; font-weight: bold;">.</span><span class="n" style="box-sizing: border-box; color: rgb(51, 51, 51);">username</span><span class="p" style="box-sizing: border-box;">)</span>
And here is how you would do the same if using a naive query:
# very similar query to the above -- main difference is we're
# aliasing the blog title to "blog_title"
tweets = Tweet.select(Tweet, User.username).join(User).naive()
for tweet in tweets.order_by(Tweet.created_date.desc()).limit(10):
print '%s, posted on %s' % (tweet.message, tweet.username)
To iterate over raw tuples, use the tuples() method:
stats = Stat.select(Stat.url, fn.Count(Stat.url)).group_by(Stat.url).tuples()
for stat_url, count in stats:
print stat_url, count
To iterate over dictionaries, use the dicts() method:
stats = Stat.select(Stat.url, fn.Count(Stat.url).alias('ct')).group_by(Stat.url).dicts()
for stat in stats:
print stat['url'], stat['ct']
<span style="font-family: Consolas, 'Andale Mono WT', 'Andale Mono', 'Lucida Console', 'Lucida Sans Typewriter', 'DejaVu Sans Mono', 'Bitstream Vera Sans Mono', 'Liberation Mono', 'Nimbus Mono L', Monaco, 'Courier New', Courier, monospace; font-size: 18px; line-height: 1.5; background-color: rgb(255, 255, 255);">9.</span><span style="font-family: Consolas, 'Andale Mono WT', 'Andale Mono', 'Lucida Console', 'Lucida Sans Typewriter', 'DejaVu Sans Mono', 'Bitstream Vera Sans Mono', 'Liberation Mono', 'Nimbus Mono L', Monaco, 'Courier New', Courier, monospace; font-size: 18px; line-height: 1.5; background-color: rgb(255, 255, 255);">Pre-fetching related instances</span>
As a corollary to the previous section in which we selected models going “up” the chain, in this section I will show you to select models going “down” the chain in a 1 -> many relationship. For example, selecting users and all of their tweets.
Assume you want to display a list of users and all of their tweets:
for user in User.select():
print user.username
for tweet in user.tweets:
print tweet.message
This will generate N queries, however - 1 for the users, and then N for each user’s tweets. Instead of doing N queries, we can do 2 instead:
- One for all the users
- One for all the tweets for the users selected in (1)
-- first query --
SELECT t1.id, t1.username FROM users AS t1;
-- second query --
SELECT t1.id, t1.message, t1.user_id
FROM tweet AS t1
WHERE t1.user_id IN (
SELECT t2.id FROM users AS t2)
Peewee can evaluate both queries and “prefetch” the tweets for each user, storing them in
an attribute on the user model. To do this, use the prefetch() function:
users = User.select()
tweets = Tweet.select()
users_prefetch = prefetch(users, tweets)
for user in users_prefetch:
print user.username
# note we are using a different attr -- it is the "related name" + "_prefetch"
for tweet in user.tweets_prefetch:
print tweet.message
will result in 2 queries – one for the users and one for the tweets. Either query can have restrictions, such as a WHERE clause,
and the queries can follow relationships arbitrarily deep:
# let's say we have users -> photos -> comments / tags
# such that a user posts photos, assigns tags to those photos, and all those
# photos can be commented on
users = User.select().where(User.active == True)
photos = Photo.select().where(Photo.published == True)
tags = Tag.select()
comments = Comment.select().where(Comment.is_spam == False, Comment.flags < 3)
# this will execute 4 queries, one for each model
users_prefetch = prefetch(users, photos, tags, comments)
for user in users_prefetch:
print user.username
for photo in user.photo_set_prefetch:
print 'photo: ', photo.filename
for tag in photo.tag_set_prefetch:
print 'tagged with:', tag.tag
for comment in photo.comment_set_prefetch:
print 'comment:', comment.comment
Note:当我们使用prefetch时,它能够保存queries到内存中。从而降低訪问数据的次数,从而提高查询效率。
可是我最好使用limit函数去做点事情,你懂得。
10.Query evaluation
In order to execute a query, it is always necessary to call the execute() method.
To get a better idea of how querying works let’s look at some example queries and their return values:
>>> dq = User.delete().where(User.active == False) # <-- returns a DeleteQuery
>>> dq
<peewee.DeleteQuery object at 0x7fc866ada4d0>
>>> dq.execute() # <-- executes the query and returns number of rows deleted
3
>>> uq = User.update(active=True).where(User.id > 3) # <-- returns an UpdateQuery
>>> uq
<peewee.UpdateQuery object at 0x7fc865beff50>
>>> uq.execute() # <-- executes the query and returns number of rows updated
2
>>> iq = User.insert(username='new user') # <-- returns an InsertQuery
>>> iq
<peewee.InsertQuery object at 0x7fc865beff10>
>>> iq.execute() # <-- executes query and returns the new row's PK
8
python轻量级ORM---peewee的更多相关文章
- python轻量级orm框架 peewee常用功能速查
peewee常用功能速查 peewee 简介 Peewee是一种简单而小的ORM.它有很少的(但富有表现力的)概念,使它易于学习和直观的使用. 常见orm数据库框架 Django ORM peewee ...
- python轻量级orm
python下的orm使用SQLAlchemy比较多,用了一段时间感觉不顺手,主要问题是SQLAlchemy太重,所以自己写了一个orm,实现方式和netsharp类似,oql部分因为代码比较多,没有 ...
- 连表查询都用Left Join吧 以Windows服务方式运行.NET Core程序 HTTP和HTTPS的区别 ASP.NET SignalR介绍 asp.net—WebApi跨域 asp.net—自定义轻量级ORM C#之23中设计模式
连表查询都用Left Join吧 最近看同事的代码,SQL连表查询的时候很多时候用的是Inner Join,而我觉得对我们的业务而言,99.9%都应该使用Left Join(还有0.1%我不知道在 ...
- 轻量级ORM框架初探-Dapper与PetaPoco的基本使用
一.EntityFramework EF是传统的ORM框架,也是一个比较重量级的ORM框架.这里仍然使用EF的原因在于为了突出轻量级ORM框架的性能,所谓有对比才有更优的选择. 1.1 准备一张数据库 ...
- Python MySQL ORM QuickORM hacking
# coding: utf-8 # # Python MySQL ORM QuickORM hacking # 说明: # 以前仅仅是知道有ORM的存在,但是对ORM这个东西内部工作原理不是很清楚, ...
- c# 轻量级ORM框架 实现(一)
发布一个自己写的一个轻量级ORM框架,本框架设计期初基于三层架构.所以从命名上来看,了解三层的朋友会很好理解. 设计该框架的目的:不想重复的写增删改查,把精力放到功能实现上. 发布改框架的原因:希望给 ...
- 自己开发轻量级ORM(二)
上一篇简单的对轻量级ORM开发开了个头.这篇主要聊下ORM框架的设计思路. ORM本质上是对数据库操作的抽象.大体上我将其分为对数据结构的抽象和对执行方法的抽象. 我的ORM设计图: ORM框架需要完 ...
- 自己开发轻量级ORM(一)
在开发ORM之前,先简单的介绍下ORM的基本概念. 对象关系映射(Object Relational Mapping,简称ORM)是一种为了解决面向对象与关系数据库存在的互不匹配的现象的技术. 简单的 ...
- 轻量级ORM框架 QX_Frame.Bantina(二、框架使用方式介绍)
轻量级ORM框架QX_Frame.Bantina系列讲解(开源) 一.框架简介 http://www.cnblogs.com/qixiaoyizhan/p/7417467.html 二.框架使用方式介 ...
- 轻量级ORM框架 QX_Frame.Bantina(一、框架简介)
轻量级ORM框架QX_Frame.Bantina系列讲解(开源) 一.框架简介 http://www.cnblogs.com/qixiaoyizhan/p/7417467.html 二.框架使用方式介 ...
随机推荐
- IDEA,与gradle引入jar包报错
Warning:<i><b>root project 'netty_lecture': Unable to resolve additional project configu ...
- JS中的slice和splice
1,slice : 定义:接收一个或两个参数,它可以创建一个由当前数组中的一项或多项组成的新数组,注意是新数组哦~ 也就是说它不会修改原来数组的值. 用法:slice( para1 ),会截取从pa ...
- GreenOpenPaint的实现(二)打开显示图片
1.DOC中添加,核心图片文件保存在这里.之所以不用Mat,是因为CVVImage有更好的输入输出函数. 我这里直接使用了public public: CvvImage m_image; 2.重载打开 ...
- linux及安全第八周总结——20135227黄晓妍
实验部分 实验环境搭建 -rm menu -rf git clone https://github.com/megnning/menu.git cd menu make rootfs qemu -ke ...
- 20155201 2016-2017-2 《Java程序设计》第十周学习总结
20155201 2016-2017-2 <Java程序设计>第十周学习总结 教材学习内容总结 Java密码技术 安全的三个属性 机密性 完整性 可用性 密码学: 主要是研究保密通信和信息 ...
- 什么是TensorFlow Serving
答:1. 从Serving 可以看出,与服务有关; 2. 那么为啥还有TensorFlow的前缀?肯定与TensorFlow有着很大的关系: 3. 那么Tensorflow是用来干什么的呢?Tenso ...
- python StringIO类
python的stringIO类用来处理字符串,由于其操作类似文件操作,可以视为内存中的文件. 1.创建stringIO 2.常用操作: write,writelines.getvalue.seek. ...
- POJ 1142 Smith Numbers(分治法+质因数分解)
http://poj.org/problem?id=1142 题意: 给出一个数n,求大于n的最小数,它满足各位数相加等于该数分解质因数的各位相加. 思路:直接暴力. #include <ios ...
- css可应用的渐进增强新特性
1. 让有滚动行为的元素平滑滚动 scroll-behavior: smooth; <div class="smooth"> </dvi> .smooth ...
- 人工神经网络 Artificial Neural Network
2017-12-18 23:42:33 一.什么是深度学习 深度学习(deep neural network)是机器学习的分支,是一种试图使用包含复杂结构或由多重非线性变换构成的多个处理层对数据进行高 ...