ACM学习历程—HDU2476 String painter(动态规划)
http://acm.hdu.edu.cn/showproblem.php?pid=2476
题目大意是给定一个起始串和一个目标串,然后每次可以将某一段区间染成一种字符,问从起始串到目标串最少需要染多少步?
读完题首先会想到的自然是用区间dp,但是列出来发现,没办法区间合并。因为一旦需要考虑对某一段成段染色的话,在区间合并的时候,就无法考虑转移过程中起始串的变化了。
既然这样,就不考虑成段染色造成的影响了,就当起始串和目标串处处不想等。
那么考虑区间[i, i+len],
自然遍历子区间[i, j],
如果[i, j]和[j+1, i+len]需要合并的话,
如果考虑成段染色的话,只有str2[i] == str2[j+1]时,考虑成段染色[i, j+1],但是[i, j+1]的父区间又有可能会成段然和str2[i]一样的颜色,所以不能直接将区间缩短成[i+1, j]和[j+2, i+len],所以可以考虑这一步的效果只相当于染str2[j+1]的时候,可以少染一个str2[i]。那么区间就变成[i+1, j]和[j+1, i+len], 这样父区间中可能再次出现一个i`,和j+1产生成段染色,即
p[i][i+len] = min(p[i][i+len], p[i+1][j]+p[j+1][i+len]);
然后就是考虑使用p来计算ans[i],表示前i个字符从起始串到目标串的步数。
ans[0]自然好考虑,只需要判断一下str1[0]和str2[0]。
对于ans[i],
如果str1[i] == str2[i],自然就可以退化成ans[i-1]。
其它情况,自然是遍历子区间ans[j]和p[j+1][i]进行合并。
代码:
#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <cmath>
#include <queue>
#include <map>
#include <set>
#include <string>
#include <vector> using namespace std; char str1[], str2[];
int n, p[][], ans[];
//p为不考虑初始串的情况,ans为考虑初始串的情况 void work()
{
for (int i = ; i < n; ++i)
p[i][i] = ;
int t;
for (int len = ; len < n; ++len)
{
for (int i = ; i < n && i+len < n; ++i)
{
p[i][i+len] = p[i+][i+len]+;
for (int j = i; j < i+len; ++j)
if (str2[i] == str2[j+])
p[i][i+len] = min(p[i][i+len], p[i+][j]+p[j+][i+len]);
}
}
ans[] = str1[]==str2[]?:;
for (int i = ; i < n; ++i)
{
ans[i] = str1[i]==str2[i]?ans[i-]:p[][i];
for (int j = ; j < i; ++j)
ans[i] = min(ans[i], ans[j]+p[j+][i]);
}
printf("%d\n", ans[n-]);
} int main()
{
//freopen("test.in", "r", stdin);
//freopen("test.out", "w", stdout);
while (scanf("%s%s", str1, str2) != EOF)
{
n = strlen(str1);
work();
}
return ;
}
ACM学习历程—HDU2476 String painter(动态规划)的更多相关文章
- ACM学习历程—HDU5586 Sum(动态规划)(BestCoder Round #64 (div.2) 1002)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5586 题目大意就是把一段序列里面的数替换成f(x),然后让总和最大. 首先可以计算出初始的总和,以及每 ...
- ACM学习历程—SNNUOJ1213 加油站问题(动态规划 || 数学)
题目链接:http://219.244.176.199/JudgeOnline/problem.php?id=1213 这是这次微软实习面试的一道题,当时只相出了一个2n的做法,面试官让我优化成n的做 ...
- ACM学习历程——POJ1260 Pearls(动态规划)
Description In Pearlania everybody is fond of pearls. One company, called The Royal Pearl, produces ...
- HDU2476 String painter —— 区间DP
题目链接:https://vjudge.net/problem/HDU-2476 String painter Time Limit: 5000/2000 MS (Java/Others) Me ...
- hdu2476 String painter(区间dp)
题目链接:http://acm.split.hdu.edu.cn/showproblem.php?pid=2476 Problem Description There are two strings ...
- HDU2476 String painter
题意 String painter Time Limit: 5000/2000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others ...
- HDU2476 String painter(DP)
题目 String painter 给出两个字符串s1,s2.对于每次操作可以将 s1 串中的任意一个子段变成另一个字符.问最少需要多少步操作能将s1串变为s2串. 解析 太妙了这个题,mark一下. ...
- ACM学习历程—HDU5696 区间的价值(分治 && RMQ && 线段树 && 动态规划)
http://acm.hdu.edu.cn/showproblem.php?pid=5696 这是这次百度之星初赛2B的第一题,但是由于正好打省赛,于是便错过了.加上2A的时候差了一题,当时有思路,但 ...
- ACM学习历程—Hihocoder 1290 Demo Day(动态规划)
http://hihocoder.com/problemset/problem/1290 这题是这次微软笔试的第三题,过的人比第一题少一点,这题一眼看过去就是动态规划,不过转移方程貌似不是很简单,调试 ...
随机推荐
- 前端学习笔记之css清除浮动float的七种常用方法总结和兼容性处理
在清除浮动前我们要了解两个重要的定义: 浮动的定义:使元素脱离文档流,按照指定方向发生移动,遇到父级边界或者相邻的浮动元素停了下来. 高度塌陷:浮动元素父元素高度自适应(父元素不写高度时,子元素写了浮 ...
- 20145311 实验一 "Java开发环境的熟悉"
20145311 实验一 "Java开发环境的熟悉" 程序设计过程 实验内容 -实现四则运算,并进行测试 编写代码 1.四则运算就四种运算,我就做了个简单的,输入两个数,然后选择一 ...
- 一个轻量级分布式 RPC 框架 — NettyRpc
原文出处: 阿凡卢 1.背景 最近在搜索Netty和Zookeeper方面的文章时,看到了这篇文章<轻量级分布式 RPC 框架>,作者用Zookeeper.Netty和Spring写了一个 ...
- POJ 1780 Code(欧拉回路+非递归dfs)
http://poj.org/problem?id=1780 题意:有个保险箱子是n位数字编码,当正确输入最后一位编码后就会打开(即输入任意多的数字只有最后n位数字有效)……要选择一个好的数字序列,最 ...
- Java IO流-合并流
2017-11-05 20:15:28 SequenceinputStream SequenceinputStream:SequenceInputStream 表示其他输入流的逻辑串联.它从输入流的有 ...
- git入门篇
git是一个分布式版本管理软件,总之是一个软件. github是一个代码托管平台,总之是一个网站. github这个网站使用git这个版本管理软件来托管代码. 相当于本地.公司服务器.Github网站 ...
- 关于keyCode, 键盘代码。 和零散的javascript知识。http://js2.coffee/(转化工具)
这个是coffeescript代码 document.addEventListener 'turbolinks:load', -> document.getElementById(" ...
- 给 C# Expression Evaluator 增加中文变量名支持
由于一些特殊的原因,我的Expression里面需要支持中文变量名,但是C# Expression Evaluator会提示错误,在他的HelperMethods.IsAlpha()里面加上这么一段就 ...
- IOS UIApplication和AppDelegate 关系
UIApplication.AppDelegate.委托等的关系? 什么是委托?为什么要有委托?委托在Iphone中的实现机制是怎样的? 一般来说,我们创建了一个Iphone项目,默认会有这个mai ...
- 054——VUE中vue-router之实例讲解定义一下单页面路由
<!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...