51nod 1225 余数的和 数学
输入1个数N(2 <= N <= 10^12)。
输出F(n) Mod 1000000007的结果。
6
3
思路:余数成等差;时间复杂度sqrt(n);
用等差数列求和的时候有个除法,所以用了下逆元;
#include<iostream>
#include<cstdio>
#include<cmath>
#include<string>
#include<queue>
#include<algorithm>
#include<stack>
#include<cstring>
#include<vector>
#include<list>
#include<set>
#include<map>
using namespace std;
#define ll long long
#define mod 1000000007
#define inf 999999999
#define esp 0.00000000001
//#pragma comment(linker, "/STACK:102400000,102400000")
void extend_Euclid(ll a, ll b, ll &x, ll &y)
{
if(b == )
{
x = ;
y = ;
return;
}
extend_Euclid(b, a % b, x, y);
ll tmp = x;
x = y;
y = tmp - (a / b) * y;
}
ll mul(ll x,ll y)
{
x%=mod;
y%=mod;
return (x*y)%mod;
}
ll divi(ll x,ll y)
{
ll xx,yy;
extend_Euclid(y,mod,xx,yy);
xx=(xx%mod+mod)%mod;
return mul(x,xx);
}
int main()
{
ll x,y,z,i,t;
scanf("%lld",&z);
ll ans=;
for(i=;i<=z;i++)
{
if(z%i!=)
{
ll d=z/i;
ll maxx=(z%i)/d+;
d=-d;
ans+=mul((z%i),maxx)+divi(mul(maxx,mul((maxx-),d)),);
ans=(ans%mod+mod)%mod;
i+=maxx-;
}
}
printf("%lld\n",ans);
return ;
}
51nod 1225 余数的和 数学的更多相关文章
- 51nod 1225 余数之和 数论
1225 余数之和 题目连接: http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1225 Description F(n) ...
- 51Nod 1225 余数之和 —— 分区枚举
题目链接:http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1225 1225 余数之和 基准时间限制:1 秒 空间限制:1 ...
- 51Nod 1225 余数之和 [整除分块]
1225 余数之和 基准时间限制:1 秒 空间限制:131072 KB 分值: 80 难度:5级算法题 收藏 关注 F(n) = (n % 1) + (n % 2) + (n % 3) + ... ...
- 51nod 1225:余数之和
传送门 题意 略 分析 \(\sum_i^n(n\%i)=\sum_i^n(n-i*n/i)=n^2-\sum_i^ni*n/i\) \(=\sum r\sum_i^ni[n/i==r]\) 可以证明 ...
- BZOJ_1257_ [CQOI2007]余数之和sum_数学
BZOJ_1257_ [CQOI2007]余数之和sum_数学 题意:给出正整数n和k,计算j(n, k)=k mod 1 + k mod 2 + k mod 3 + … + k mod n的值. 分 ...
- 51nod 1225 数学
F(n) = (n % 1) + (n % 2) + (n % 3) + ...... (n % n).其中%表示Mod,也就是余数. 例如F(6) = 6 % 1 + 6 % 2 + 6 % 3 + ...
- bzoj 1257: [CQOI2007]余数之和sum 数学 && 枚举
1257: [CQOI2007]余数之和sum Time Limit: 5 Sec Memory Limit: 162 MBSubmit: 1779 Solved: 823[Submit][Sta ...
- [CQOI2007]余数求和 (分块+数学
题目描述 给出正整数n和k,计算G(n, k)=k mod 1 + k mod 2 + k mod 3 + … + k mod n的值,其中k mod i表示k除以i的余数.例如G(10, 5)=5 ...
- 51nod 1225
题目 题解:看数据范围就估计是根号算法.考虑我们要求的式子: $ \sum\limits_{i = 1}^n {n - \left\lfloor {\frac{n}{i}} \right\rfloor ...
随机推荐
- git下载和上传项目
首先是git的下载和安装: https://www.cnblogs.com/chenxqNo01/p/6372933.html git的简单使用: 从码云 clone 项目: git clone ht ...
- Jury Compromise---poj1015(动态规划,dp,)
题目链接:http://poj.org/problem?id=1015 大致题意: 在遥远的国家佛罗布尼亚,嫌犯是否有罪,须由陪审团决定.陪审团是由法官从公众中挑选的.先随机挑选n 个人作为陪审团的候 ...
- 我希望知道的关于Django的11件事(转)
英文原文:https://medium.com/cs-math/f29f6080c131 译文:http://my.oschina.net/chenlei123/blog/270672 两年前, 我开 ...
- 爬虫Scrapy框架
安装scrapy 在安装过程中报错:解决方案 通过在https://www.lfd.uci.edu/~gohlke/pythonlibs/#twisted,然后下载: CP后是python 版本,32 ...
- (2.16)Mysql之SQL基础——函数
(2.16)Mysql之SQL基础——函数 关键词:mysql函数,mysql自定义函数,mysql聚合函数,mysql字符串函数,mysql数值函数 1.自定义函数 -- (1)一般形式 creat ...
- 在SQL Server里如何进行数据页级别的恢复
在SQL Server里如何进行页级别的恢复 关键词:数据页修复 在今天的文章里我想谈下每个DBA应该知道的一个重要话题:在SQL Server里如何进行页级别还原操作.假设在SQL Server里你 ...
- Openstack(九)部署nova服务(控制节点)
9.1nova服务介绍 nova是openstack最早的组件之一,nova分为控制节点和计算节点,计算节点通过nova computer进行虚拟机创建,通过libvirt调用kvm创建虚拟机,nov ...
- 使用jQuery包装节点
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/ ...
- mysql主从复制,及扩展
一.MySQL简单复制相关概念: 1. mysql复制的意义:Mysql复制是使得mysql完成高性能应用的前提 2. mysql复制的机制: SLAVE端线程: IO thread: 向主服务请求二 ...
- 前端基础(html)
<!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...