图片拼接SIFT
图片拼接
SIFT: 特征点处理:位置插值,去除低对比度点,去除边缘点
方向估计
描述子提取
下面的程序中使用:
第一步: 使用SIFT生成器提取描述子和特征
第二步: 使用KNN检测来自A,B图的SIFT特征匹配对, 形成视觉变化矩阵H
第三步: 将图片A进行视觉变化,将B图片放在变换图片的左边,构成最终图片
imageStiching.py, 进行函数调用,返回并显示结果
from Stitcher import Stitcher
import cv2 as cv imageA = cv.imread('image/left_01.png')
imageB = cv.imread('image/right_01.png') sticher = Stitcher()
(result, vis) = sticher.stitch([imageA, imageB], showMatches=True) cv.imshow('imageA', imageA)
cv.imshow('imageB', imageB)
cv.imshow('vis', vis)
cv.imshow('result', result)
cv.waitKey(0)
cv.destroyAllWindows()
Stitcher.py 生成主要函数
import numpy as np
import cv2 class Stitcher:
# 拼接函数
def stitch(self, images, ratio=0.75, reprojThresh=4.0, showMatches=False):
#获取输入图片
imageB, imageA = images
#检测A,B图片的SIFT关键特征点, 并计算特征描述子
(kpsA, featuresA) = self.detectAndDescribe(imageA)
(kpsB, featuresB) = self.detectAndDescribe(imageB)
# 匹配两种图片的所有特征点,并返回结果
M = self.matchKeypoints(kpsA, kpsB, featuresA, featuresB, ratio, reprojThresh) # 如果返回结果为空, 没有匹配成功的特征点,退出算法
if M is None:
return None # 否则,提取匹配结果
# H是3*3视角变换矩阵
(matches, H, status) = M
# 将图片A进行视角变换, result是变化后图片
result = cv2.warpPerspective(imageA, H, (imageA.shape[1] + imageB.shape[1], imageA.shape[0]))
# 将B图片传入result图片最左端
result[0:imageB.shape[0], 0:imageB.shape[1]] = imageB # 检验是否需要显示图片匹配
if showMatches:
# 生成匹配图片
vis = self.drawMatches(imageA, imageB, kpsA, kpsB, matches, status)
# 返回结果
return (result, vis) def detectAndDescribe(self, image):
# 将彩色图片转换为灰度图
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) # 建立SIFT生成器
descriptor = cv2.xfeatures2d.SIFT_create()
# 检测SIFT特征点,并计算描述子
(kps, features) = descriptor.detectAndCompute(image, None) # 将结果转换为Numpy数组
kps = np.float32([kp.pt for kp in kps])
# 返回特征点集, 及对应的描述特征
return(kps, features) def matchKeypoints(self, kpsA, kpsB, featuresA, featuresB, ratio, reprojThresh):
# 建立暴力匹配器
matcher = cv2.DescriptorMatcher_create('BruteForce') # 使用KNN检测来自A,B图的SIFT特征匹配对, K=2
rawMatches = matcher.knnMatch(featuresA, featuresB, 2) matches = []
for m in rawMatches:
# 当最近距离跟次近距离的比值小于ratio值时,保留此匹配对
if len(m) == 2 and m[0].distance < m[1].distance * ratio:
# 储存两个点在featuresA, featuresB中的索引值
matches.append((m[0].trainIdx, m[0].queryIdx)) # 当筛选后的匹配对大于4时, 计算视角变化矩阵
if len(matches) > 4:
# 获取匹配对的点坐标
ptsA = np.float32([kpsA[i] for (_, i) in matches])
ptsB = np.float32([kpsB[i] for (i, _) in matches]) # 计算视角变化矩阵
(H, status) = cv2.findHomography(ptsA, ptsB, cv2.RANSAC, reprojThresh) # 返回结果
return (matches, H, status) return None def drawMatches(self, imageA, imageB, kpsA, kpsB, matches, status):
# 初始化可视化图片, 将A,B图左右连接
(hA, wA) = imageA.shape[:2]
(hB, wB) = imageB.shape[:2]
vis = np.zeros((max(hA, hB), wA + wB, 3), dtype='uint8')
vis[0:hA, 0:wA] = imageA
vis[0:hB, wA:] = imageB # 联合遍历, 画出匹配对
for ((trainIdx, queryIdx), s) in zip(matches, status):
# 当点对匹配成功时,画到可视化图上 if s==1:
# 画出匹配对
ptA = (int(kpsA[queryIdx][0]), int(kpsA[queryIdx][1]))
ptB = (int(kpsB[trainIdx][0] + wA), int(kpsB[trainIdx][1]))
cv2.line(vis, ptA, ptB, (0, 255, 0), 1) # 返回可视化结果
return vis
图片拼接SIFT的更多相关文章
- 基于OpenCV全景拼接(Python)SIFT/SURF
一.实验内容: 利用sift算法,实现全景拼接算法,将给定的两幅图片拼接为一幅. 二.实验环境: 主机配置: CPU :intel core i5-7300 2.50GHZ RAM :8.0GB 运行 ...
- sift特征
已经有很多博客已经将sift特征提取算法解释的很清楚了,我只是记录一些我不明白的地方,并且记录几个理解sift特征比较好的博客. 1. http://aishack.in/tutorials/sift ...
- sift特征源码
先贴上我对Opencv3.1中sift源码的注释吧,虽然还有很多没看懂.先从detectAndCompute看起 void SIFT_Impl::detectAndCompute(InputArray ...
- opencv中的SIFT,SURF,ORB,FAST 特征描叙算子比较
opencv中的SIFT,SURF,ORB,FAST 特征描叙算子比较 参考: http://wenku.baidu.com/link?url=1aDYAJBCrrK-uk2w3sSNai7h52x_ ...
- 特征描述算子-sift
特征描述算子-sift http://boche.github.io/download/sift/Introduction%20to%20SIFT.pdf
- SIFT特征详解
1.SIFT概述 SIFT的全称是Scale Invariant Feature Transform,尺度不变特征变换,由加拿大教授David G.Lowe提出的.SIFT特征对旋转.尺度缩放.亮度变 ...
- SIFT中的尺度空间和传统图像金字塔
SIFT中的尺度空间和传统图像金字塔 http://www.zhizhihu.com/html/y2010/2146.html 最近自己混淆了好多概念,一边弄明白的同时,也做了一些记录,分享一下.最近 ...
- SIFT特征提取分析
SIFT特征提取分析 sift 关键点,关键点检测 读'D. G. Lowe. Distinctive Image Features from Scale-Invariant Keypoints[J] ...
- SIFT特征提取分析(转载)
转载自: http://blog.csdn.net/abcjennifer/article/details/7639681 SIFT(Scale-invariant feature transform ...
随机推荐
- Java中字符串比较的注意点
Java中必须使用string1.equals(string2)来进行判断 补充如果: string s1=new String("Hello"); string s2=new S ...
- idea上查看本文件svn修改的历史版本
如上图依次点击,得到下图,比较即可:
- Python - Learn Note (2)
Python注释 Python的注释以#开头,后面的文字直到行尾都算注释 Python基本数据类型 整数.浮点数(浮点数也就是小数,之所以称为浮点数,是因为按照科学记数法表示时,一个浮点数的小数点位置 ...
- 条件查询、SQL、JPQL、HQL比较
一.什么是JPQL 在 Java EE 中,JPQL( Java 持久性查询语言)是专门为Java 应用程序访问和导航实体实例设计的.JPQL是EJB2使用的查询语言EJB QL的扩展,它继承了EJB ...
- 【转】MongoDB 3.0 正式版本即将发布,强力推荐
MongoDB 今天宣布3.0 正式版本即将发布.这标志着 MongoDB 数据库进入了一个全新的发展阶段,提供强大.灵活而且易于管理的数据库管理系统. MongoDB 3.0 在性能和伸缩性方面都有 ...
- busybox microcom Segmentation fault
/********************************************************************************* * busybox microco ...
- Linux驱动调试学习笔记
1. struct task_struct current->comm[16]; /*此进程可执行文件的名字!!可只对此进程执行打印*/
- 泰克 Tektronix THS720A 示波器 显示屏维修记录
THS720A 示波器 显示屏维护记录 打开后看到显示屏是 LM32P10 的型号,在网上找了一圈都要 1000 块左右. 看了一个规格书 Sharp 的,已经停产. 下一步看看有没有替代的.
- TASKER 定制你的手机让它在办公室时屏幕 30 分钟才灭
TASKER 定制你的手机让它在办公室时屏幕 30 分钟才灭 因为到的办公室,手机一直是充电的,不想屏幕太快关关掉,所以使用 TASKER 做了一个条件. 当 WIFI 连接到公司 WIFI 且充电中 ...
- [LeetCode系列] 跳跃问题II
给定一系列非负整数, 每个值代表从此下标可以向前跳跃的最远距离, 试求出跳跃到数组尾端需要的最少步骤. 如给定 [2,3,1,1,4], 返回2. (从下标0跳到1, 从1跳到下标4). 算法描述: ...