Flask中使用celery队列处理执行时间较长的请求。

一. 安装celery

pip install celery flask  redis

二. celery简介

Celery是个异步分布式任务队列
通过Celery在后台跑任务并不像线程那么简单,但是用Celery的话,能够是应用有较好的扩展性,因为Celery是个分布式架构,下面介绍Celery的三个核心组件:
1. 生产者(Celery client): 生产者发送消息,在Flask上工作时,生产者在Flask应用内运行
2. 消费者(Celert worker): 消费者用于处理后台任务。消费者可以是本地的也可以是远程的。我们可以在运行Flask的server上运行一个单一的消费者,当业务量上涨之后再去添加更多的消费者
3. 消息传递着(Celery broker): 生产者和消费者的信息交互使用的是消息队列,Celery支持若干方式的消息队列,其中最长用的是RabbitMQ和Redis, 我们在使用过程中使用的Redis

三. redis配置与使用

redis配置文件/etc/redis.conf

1.设置为后台启动
daemonize yes
2.redis端口设置
port 6379 # default prot
3.日志文件
logfile /home/liuyadong/work/log/redis.log
4.数据保存文件
dir /home/liuyadong/data/redisData 通过下面命令指定配置文件启动redis:
redis-server /etc/redis.conf 通过下面命令测试是否启动成功:
redis-cli -p 6379
下面这样表示成功(进入了命令行模式):
redis 127.0.0.1:6379> 查看启动端口:
sudo netstat -ntlp | grep 6379
tcp 0 0 127.0.0.1:6379 0.0.0.0:* LISTEN 49380/redis-server

四. celery使用简介

1.Choosing a broker
最常用的broker包括: RabbitMQ 和 Redis, 我们使用Redis, Redis的安装及启动等查看第二部分 2.intall celery
pip install celery 3.Application
使用celery的第一步是创建一个application, 通常叫做'app'。具体的创建一个app的代码如下:
$ cat tasks.py
#!/usr/bin/env python
from celery import Celery app = Celery('tasks', broker='redis://localhost')
@app.tasks
def add(x, y):
return x + y Note: Celery第一个参数必须是当前module的模拟购置,本次实例中为:tasks 4.Running the celery worker server
$ celery -A tasks worker --loglevel=info 5.Calling the tasks
可以通过delay()或者apply_sync()方法来调用一个task
>>> from tasks import add
>>> add.delay(4, 4) 6. Keeping Results
我们可以将task的执行状态保存起来,可以保存到broker中, 可以通过CELERY_RESULT_BACKEND字段来设置保存结果。
也可以通过Celery的backend参数来设置
app.Celery('tasks', broker='redis://localhost', backend='redis://localhost') >>> result = add.delay(4, 4)
可以通过ready()方法来判断程序执行是否完成,执行完成返回True.
>>> result.ready()
False 下面是AsyncResult对象的其他调用方法介绍:
1) AsyncResult.get(timeout=None, propagate=True, interval=0.5, no_ack=True, follow_parents=True) timeout : 设置一个等待的预操作时间,单位是s, 方法返回执行结果
propagate : 如果task执行失败,则Re-taise Exception
interval : 等待一定时间重新执行操作,如果使用amqp来存储backend则此参数无效
no_ack : Enable amqp no ack (automatically acknowledge message)
If this is False then the message will not be acked
follow_parents : Reraise any exception raised by parent task 2) AsyncResult.state 或 status属性
方法返回当前task的执行状态,返回值包括下面多种情况:
PENDING: task正在等待执行
STARTED: task已经开始执行了
RETRY : task重新执行了,这可能是由于第一次执行失败引起的
FAILURE: task执行引发了异常,并且结果的属性当中包括了异常是由哪个task引起的
SUCCESS: task执行成功,结果的属性当中包括执行结果 3) AsyncResult.success()
如果返回True,则表示task执行成功 4) AsyncResult.traceback()
得到一个执行失败的task的traceback 7.Configuration celert
默认的配置对于大多数用户来说已经足够好了,但是我们仍有许多想让celery按照我们的想法去work,通过configuration实现是一个好的方式。 configutation可以通过app设置,也可以通过一个单独的模块进行设置。
比如,通过app设置CELERY_TASK_SERIALIZER属性:app.conf.CELERY_TASK_SERIALIZER = 'json'
如果你一次性有许多需要配置,则可以通过update()方法实现:
app.conf.update(
CELERY_TASK_SERIALIZER='json',
CELERY_ACCEPT_CONTENT=['json'], # Ignore other content
CELERY_RESULT_SERIALIZER='json',
CELERY_TIMEZONE='Europe/Oslo',
CELERY_ENABLE_UTC=True,
) 你也可以通过app.config_from_object() method告诉Celery通过一个模块来生成configuration: app.config_from_object('celeryconfig') 这个模块通常叫做 celeryconfig,但实际上你可以叫任何名字。
$ cat celeryconfig.py
CELERY_ROUTES = {'tasks.add': 'low-priority', 'tasks.add': {'rate_limit': '10/m'} 8.Where to go from here
如果你想了解更多请阅读: http://docs.celeryproject.org/en/latest/getting-started/next-steps.html#next-steps
之后阅读: http://docs.celeryproject.org/en/latest/userguide/index.html#guide

【理论】python使用celery异步处理请求的更多相关文章

  1. 【Python】Celery异步处理

    参考:http://www.cnblogs.com/znicy/p/5626040.html 参考:http://www.weiguda.com/blog/73/ 参考:http://blog.csd ...

  2. python—Celery异步分布式

    python—Celery异步分布式 Celery  是一个python开发的异步分布式任务调度模块,是一个消息传输的中间件,可以理解为一个邮箱,每当应用程序调用celery的异步任务时,会向brok ...

  3. python 关于celery的异步任务队列的基本使用(celery+redis)【无配置文件设置】

    环境说明: window7 X64 python 2.7.6 .celery 3.1.25.redis 2.10.6 本地安装的redis服务端版本号:Redis-x64-3.2.100 工程结构说明 ...

  4. python 关于celery的异步任务队列的基本使用(celery+redis)【采用配置文件设置】

    工程结构说明:源文件下载请访问https://i.cnblogs.com/Files.aspx __init__.py:实例化celery,并加载配置模块 celeryconfig.py:配置模块 t ...

  5. Django --- celery异步任务与RabbitMQ模块

    一 RabbitMQ 和 celery 1 celery Celery 是一个 基于python开发的分布式异步消息任务队列,通过它可以轻松的实现任务的异步处理, 如果你的业务场景中需要用到异步任务, ...

  6. celery异步任务、定时任务

    阅读目录 一 什么是Celery? 二 Celery的使用场景 三 Celery的安装配置 四 Celery异步任务 五Celery定时任务 六在Django中使用Celery   一 什么是Cele ...

  7. celery异步发送邮件

    利用Django框架发送邮件的详细过程,在前两天的博客中有所记录,但是单纯的那样发邮件是有非常大的问题的,这就需要celery异步发送来解决 首先我们来看一下邮件发送的过程: Django网站先发送到 ...

  8. Django使用Celery异步任务队列

    1  Celery简介 Celery是异步任务队列,可以独立于主进程运行,在主进程退出后,也不影响队列中的任务执行. 任务执行异常退出,重新启动后,会继续执行队列中的其他任务,同时可以缓存停止期间接收 ...

  9. Python之celery的简介与使用

    celery的简介   celery是一个基于分布式消息传输的异步任务队列,它专注于实时处理,同时也支持任务调度.它的执行单元为任务(task),利用多线程,如Eventlet,gevent等,它们能 ...

随机推荐

  1. JSP 表单处理

    JSP 表单处理 我们在浏览网页的时候,经常需要向服务器提交信息,并让后台程序处理.浏览器中使用 GET 和 POST 方法向服务器提交数据. GET 方法 GET方法将请求的编码信息添加在网址后面, ...

  2. BeginInit与EndInit的实践总结

    在项目中,遇到这种情况,总结随便如下: 初始化时:添加操作,BeginInit{flag=true}  警情是一条条加入的,全部都加入后,图表再一次性生成   EndInit{flag=false} ...

  3. 剑指 offer面试题20 顺时针打印矩阵

    [题目描述] 输入一个矩阵,按照从外向里以顺时针的顺序依次打印出每一个数字,例如,如果输入如下矩阵: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 则依次打印出数字1, ...

  4. 数据库使用B+树原理

    转载:http://zhuanlan.51cto.com/art/201808/582078.htm https://www.cnblogs.com/vincently/p/4526560.html( ...

  5. bzoj1176

    题解: 和上一题差不多 就加上一个初始值 代码: #include<bits/stdc++.h> ; using namespace std; int n,m,cnt,s,sum[N],a ...

  6. 升级安装windows8.1以后windowsphone8不能启动虚拟机的办法

    如果之前在的虚拟机是OK的话,VS2012需要安装update3补丁才可以. 下载地址:http://download.microsoft.com/download/D/4/8/D48D1AC2-A2 ...

  7. java并发编程之二--CountDownLatch的使用

    CountDownLatch类 允许一个或多个线程等待直到在其他线程中执行的一组操作完成的同步辅助. CountDownLatch能够使一个线程在等待另外一些线程完成各自工作之后,再继续执行.使用一个 ...

  8. 用 PHPMailer 发送邮件

    REFs http://gohom.win/2015/07/02/PHPmailer/ http://blog.wpjam.com/m/phpmailer/ https://www.kancloud. ...

  9. 《DSP using MATLAB》示例 Example 10.2

    代码: %% ------------------------------------------------------------------------ %% Output Info about ...

  10. Ext.js基础

    第一章:Ext.js基础 好书推荐 Javascript设计模式 征服ajax web 2.0开发技术详解 简介 基础要求 了解HTML.CSS.熟练JS.JS的OOP.AJAX JSP/PHP/AS ...