【BZOJ1042】硬币购物(动态规划,容斥原理)
【BZOJ1042】硬币购物(动态规划,容斥原理)
题面
Description
硬币购物一共有4种硬币。面值分别为c1,c2,c3,c4。某人去商店买东西,去了tot次。每次带di枚ci硬币,买s
i的价值的东西。请问每次有多少种付款方法。
Input
第一行 c1,c2,c3,c4,tot 下面tot行 d1,d2,d3,d4,s,其中di,s<=100000,tot<=1000
Output
每次的方法数
Sample Input
1 2 5 10 2
3 2 3 1 10
1000 2 2 2 900
Sample Output
4
27
题解
真题真好啊。
先不考虑任何有关于硬币个数的限制
设\(f[i]\)表示没有任何限制的情况下,价格为\(n\)的方案数
直接做一个背包就行了。
现在加上限制来看,我们用总方案减去不合法。
总方案是\(f[n]\),不合法呢?
某一个硬币如果不合法,那么它就要用\(d+1\)个
剩下的随便选,也就是\(f[n-c*(d+1)]\)
这样直接容斥计算即可。
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<set>
#include<map>
#include<vector>
#include<queue>
using namespace std;
#define ll long long
#define RG register
inline int read()
{
RG int x=0,t=1;RG char ch=getchar();
while((ch<'0'||ch>'9')&&ch!='-')ch=getchar();
if(ch=='-')t=-1,ch=getchar();
while(ch<='9'&&ch>='0')x=x*10+ch-48,ch=getchar();
return x*t;
}
int c[4],d[4],S;
ll f[111111];
int main()
{
for(int i=0;i<4;++i)c[i]=read();
f[0]=1;
for(int k=0;k<4;++k)
for(int j=c[k];j<=100000;++j)
f[j]+=f[j-c[k]];
int Q=read();
while(Q--)
{
for(int i=0;i<4;++i)d[i]=read();S=read();
ll ss,ans=0;
for(int i=0,tt;i<16;++i)
{
ss=tt=0;
for(int j=0;j<4;++j)
if(i&(1<<j))++tt,ss+=(d[j]+1)*c[j];
if(ss>S)continue;
(tt&1)?ans-=f[S-ss]:ans+=f[S-ss];
}
printf("%lld\n",ans);
}
return 0;
}
【BZOJ1042】硬币购物(动态规划,容斥原理)的更多相关文章
- BZOJ_1042_[HAOI2008]硬币购物_容斥原理+背包
BZOJ_1042_[HAOI2008]硬币购物_容斥原理+背包 题意: 硬币购物一共有4种硬币.面值分别为c1,c2,c3,c4.某人去商店买东西,去了tot次.每次带di枚ci硬币,买s i的价值 ...
- bzoj 1042: [HAOI2008]硬币购物 dp+容斥原理
题目链接 1042: [HAOI2008]硬币购物 Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 1706 Solved: 985[Submit][ ...
- BZOJ 1042:[HAOI2008]硬币购物(容斥原理+DP)
[题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=1042 [题目大意] 硬币购物一共有4种硬币.面值分别为c1,c2,c3,c4. 某人去 ...
- bzoj1042硬币购物
题目:http://www.lydsy.com/JudgeOnline/problem.php?id=1042 dp预处理+容斥原理. 先预处理求出无限制的各面值的组成方案数 f (完全背包). 求s ...
- BZOJ 1042: [HAOI2008]硬币购物(容斥原理)
http://www.lydsy.com/JudgeOnline/problem.php?id=1042 题意: 思路: 如果不考虑硬币个数的话,这就是一道完全背包的题目. 直接求的话行不通,于是这里 ...
- bzoj1042硬币购物——递推+容斥
题目:http://www.lydsy.com/JudgeOnline/problem.php?id=1042 递推,再用容斥原理减掉多余的,加上多减的……(dfs)即可. 代码如下: #includ ...
- Luogu P1450 [HAOI2008]硬币购物 背包+容斥原理
考虑如果没有个数的限制,那么就是一个完全背包,所以先跑一个完全背包,求出没有个数限制的方案数即可. 因为有个数的限制,所以容斥一下:没有1个超过限制的方案=至少0个超过限制-至少1个超过限制+至少2个 ...
- bzoj 1042: [HAOI2008]硬币购物【容斥原理+dp】
当然是容斥啦. 用dp预处理出\( f[i] \),表示在\( i \)价格时不考虑限制的方案数,转移方程是\( f[i]+=f[i-c[j]] \),用状压枚举不满足的状态容斥一下即可. #incl ...
- [bzoj1042]硬币购物
先预处理出没有上限的方案数,然后容斥,然后将所有东西的范围都变为[0,+oo),即可用预处理出的dp数组计算 1 #include<bits/stdc++.h> 2 using names ...
随机推荐
- CSP201612-2:工资计算
引言:CSP(http://www.cspro.org/lead/application/ccf/login.jsp)是由中国计算机学会(CCF)发起的"计算机职业资格认证"考试, ...
- DeepLearning - Overview of Sequence model
I have had a hard time trying to understand recurrent model. Compared to Ng's deep learning course, ...
- 第五次ScrumMeeting博客
第五次ScrumMeeting博客 本次会议于10月29日(日)22时整在3公寓725房间召开,持续15分钟. 与会人员:刘畅.辛德泰.窦鑫泽.张安澜.赵奕. 1. 每个人的工作(有Issue的内容和 ...
- 关于 WebView 知识点的详解
什么是 WebView WebView 是手机中内置了一款高性能 webkit 内核浏览器,在 SDK 中封装的一个组件.没有提供地址栏和导航栏, WebView 只是单纯的展示一个网页界面.在开发中 ...
- linux-sftp-指定端口号登录远程主机
sftp -oPort=60001 root@192.168.0.254 -o选项来指定端口号 -oPort=远程端口号
- python正则表达式中含有变量的写法
使用格式化字符串的方式实现举例: re.findall("(this,%s,'(.*?)'"%str(i),"abcd(this,1,'123123)')这里i为变量
- Play on Words(欧拉回路)
Description Some of the secret doors contain a very interesting word puzzle. The team of archaeologi ...
- Scrum立会报告+燃尽图 03
此作业要求:[https://edu.cnblogs.com/campus/nenu/2018fall/homework/2190] 一.小组介绍 组长:王一可 组员:范靖旋,王硕,赵佳璐,范洪达,祁 ...
- Python学习之路8 - 内置方法
abs(-230) #取绝对值 all([0,1,-5]) #如果参数里面的所有值都为真就返回真,否则返回假 any([0,1,-5]) #如果参数里面有一个值为真则返回真,否则返回假 ascii([ ...
- mysql不能启动报error2013错误的解决办法
Mysql mysql lost connection to server during query 问题解决方法 2013-10-16 11:10:53 缘由: 在查询Mysql中的数据库,或者修改 ...