【BZOJ1042】硬币购物(动态规划,容斥原理)

题面

BZOJ

Description

  硬币购物一共有4种硬币。面值分别为c1,c2,c3,c4。某人去商店买东西,去了tot次。每次带di枚ci硬币,买s

i的价值的东西。请问每次有多少种付款方法。

Input

  第一行 c1,c2,c3,c4,tot 下面tot行 d1,d2,d3,d4,s,其中di,s<=100000,tot<=1000

Output

  每次的方法数

Sample Input

1 2 5 10 2

3 2 3 1 10

1000 2 2 2 900

Sample Output

4

27

题解

真题真好啊。

先不考虑任何有关于硬币个数的限制

设\(f[i]\)表示没有任何限制的情况下,价格为\(n\)的方案数

直接做一个背包就行了。

现在加上限制来看,我们用总方案减去不合法。

总方案是\(f[n]\),不合法呢?

某一个硬币如果不合法,那么它就要用\(d+1\)个

剩下的随便选,也就是\(f[n-c*(d+1)]\)

这样直接容斥计算即可。

#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<set>
#include<map>
#include<vector>
#include<queue>
using namespace std;
#define ll long long
#define RG register
inline int read()
{
RG int x=0,t=1;RG char ch=getchar();
while((ch<'0'||ch>'9')&&ch!='-')ch=getchar();
if(ch=='-')t=-1,ch=getchar();
while(ch<='9'&&ch>='0')x=x*10+ch-48,ch=getchar();
return x*t;
}
int c[4],d[4],S;
ll f[111111];
int main()
{
for(int i=0;i<4;++i)c[i]=read();
f[0]=1;
for(int k=0;k<4;++k)
for(int j=c[k];j<=100000;++j)
f[j]+=f[j-c[k]];
int Q=read();
while(Q--)
{
for(int i=0;i<4;++i)d[i]=read();S=read();
ll ss,ans=0;
for(int i=0,tt;i<16;++i)
{
ss=tt=0;
for(int j=0;j<4;++j)
if(i&(1<<j))++tt,ss+=(d[j]+1)*c[j];
if(ss>S)continue;
(tt&1)?ans-=f[S-ss]:ans+=f[S-ss];
}
printf("%lld\n",ans);
}
return 0;
}

【BZOJ1042】硬币购物(动态规划,容斥原理)的更多相关文章

  1. BZOJ_1042_[HAOI2008]硬币购物_容斥原理+背包

    BZOJ_1042_[HAOI2008]硬币购物_容斥原理+背包 题意: 硬币购物一共有4种硬币.面值分别为c1,c2,c3,c4.某人去商店买东西,去了tot次.每次带di枚ci硬币,买s i的价值 ...

  2. bzoj 1042: [HAOI2008]硬币购物 dp+容斥原理

    题目链接 1042: [HAOI2008]硬币购物 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 1706  Solved: 985[Submit][ ...

  3. BZOJ 1042:[HAOI2008]硬币购物(容斥原理+DP)

    [题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=1042 [题目大意] 硬币购物一共有4种硬币.面值分别为c1,c2,c3,c4. 某人去 ...

  4. bzoj1042硬币购物

    题目:http://www.lydsy.com/JudgeOnline/problem.php?id=1042 dp预处理+容斥原理. 先预处理求出无限制的各面值的组成方案数 f (完全背包). 求s ...

  5. BZOJ 1042: [HAOI2008]硬币购物(容斥原理)

    http://www.lydsy.com/JudgeOnline/problem.php?id=1042 题意: 思路: 如果不考虑硬币个数的话,这就是一道完全背包的题目. 直接求的话行不通,于是这里 ...

  6. bzoj1042硬币购物——递推+容斥

    题目:http://www.lydsy.com/JudgeOnline/problem.php?id=1042 递推,再用容斥原理减掉多余的,加上多减的……(dfs)即可. 代码如下: #includ ...

  7. Luogu P1450 [HAOI2008]硬币购物 背包+容斥原理

    考虑如果没有个数的限制,那么就是一个完全背包,所以先跑一个完全背包,求出没有个数限制的方案数即可. 因为有个数的限制,所以容斥一下:没有1个超过限制的方案=至少0个超过限制-至少1个超过限制+至少2个 ...

  8. bzoj 1042: [HAOI2008]硬币购物【容斥原理+dp】

    当然是容斥啦. 用dp预处理出\( f[i] \),表示在\( i \)价格时不考虑限制的方案数,转移方程是\( f[i]+=f[i-c[j]] \),用状压枚举不满足的状态容斥一下即可. #incl ...

  9. [bzoj1042]硬币购物

    先预处理出没有上限的方案数,然后容斥,然后将所有东西的范围都变为[0,+oo),即可用预处理出的dp数组计算 1 #include<bits/stdc++.h> 2 using names ...

随机推荐

  1. Maven学习(十三)-----Maven 构建生命周期

    Maven 构建生命周期 构建生命周期是什么? 构建生命周期阶段的目标是执行顺序是一个良好定义的序列. 这里使用一个例子,一个典型的 Maven 构建生命周期是由下列顺序的阶段: 阶段 处理 描述 准 ...

  2. TW实习日记:前三天

    今天是2018年7月20号,周五.从周一开始实习到现在,终于想起来要写日记这种东西了,可以记录一下自己这一天所学所做所知也是蛮不错的.先简单总结一下自己的大学生活吧,算是多姿多彩,体验了很多东西.在大 ...

  3. mysql 无法启动,错误1067,进程意外终止

    在做项目启动mysql数据库时,经常出现 这个错误,今天总结一下 //查看了网上很多的方法,都不适用,但或许对你适用.ps:网上只提供了怎么解决这个问题,但是没有将怎么去发现问题,对症下药才是王道.而 ...

  4. JAVA学习笔记--字符串概述

    一.String类 String类代表字符串,是由字符构成的一个序列.创建String对象的方法很简单,有以下几种: 1)用new来创建: String s1 = new String("m ...

  5. 7.hdfs工作流程及机制

    1. hdfs基本工作流程 1. hdfs初始化目录结构 hdfs namenode -format 只是初始化了namenode的工作目录 而datanode的工作目录是在datanode启动后自己 ...

  6. Cross origin requests are only supported for protocol schemes: http, data, chrome,chrome-extension的问题

    Cross origin requests are only supported for protocol schemes: http, data, chrome,chrome-extension的问 ...

  7. Polycarp and Letters(set首战!)

    Description Polycarp loves lowercase letters and dislikes uppercase ones. Once he got a string s con ...

  8. Sorting a Three-Valued Sequence(三值排序)

    Description 排序是一种很频繁的计算任务.现在考虑最多只有三值的排序问题.一个实际的例子是,当我们给某项竞赛的优胜者按金银铜牌序的时候. 在这个任务中可能的值只有三种1,2和3.我们用交换的 ...

  9. 王者荣耀交流协会scrum立会20171111

    1.立会照片 成员王超,高远博,冉华,王磊,王玉玲,任思佳,袁玥全部到齐. master:高远博 2.时间跨度: 2017年11月10日 18:00 - 18:33 ,总计33分钟. 3.地 点: 一 ...

  10. 王者荣耀交流协会--第3次Scrum会议

    Scrum master:王玉玲 要求1:工作照片 要求2:时间跨度:2017年10月15号  6:00--6:24  共计24min要求3:地点:传媒西楼204,会议室要求4:立会内容:1.从昨日会 ...