hdu 5521 Meeting(最短路)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5521
题意:有1-n共n个点,给出m个块(完全图),并知道块内各点之间互相到达花费时间均为ti。已知两人分别在点1和点n,求在哪些点相遇能使得花费时间最短。
题解:显然先想到从点1和点n分别求最短路,然后枚举点找出哪些点是相遇花费时间最少的。但是这题边太多了,假设一个完全图里有x个点,那边就有x*(x-1)/2条了,必须化简其边。一个可行的办法是给每个完全图增加两个点,分别为入点和出点,入点向其中的点连边,其中的点再向出点连边,权均为0,出点向入点连边,权为ti,边数就化简为2*x了。
代码实现:
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const ll INF = 1e18;
const int N = ;
const int M = ;
struct edge {
int to;
ll cost;
edge(int _to, ll _cost):to(_to),cost(_cost){}
};
typedef pair<ll, int> P;// first是最短距离,second是顶点的编号
int V;
vector<edge>G[N];
ll d[][N];//点1 和 点n 到达其他点的最短时间
void dij(int id, int s) {
priority_queue<P, vector<P>, greater<P> > que;
for(int i = ; i <= V; ++i) d[id][i] = INF;
d[id][s] = ;
que.push(P(, s)); while(!que.empty()) {
P p = que.top(); que.pop();
int v = p.second;
if(d[id][v] < p.first) continue;
int num = G[v].size();
for(int i = ; i < num; ++i) {
edge e = G[v][i];
if(d[id][e.to] > d[id][v] + e.cost) {
d[id][e.to] = d[id][v] + e.cost;
que.push(P(d[id][e.to], e.to));
}
}
}
}
int main() {
int k, T, t, n, m, i, s, x, u, v;
scanf("%d", &T);
for(k = ; k <= T; ++k) {
for(i = ; i < N; ++i) G[i].clear();
scanf("%d%d", &n, &m);//点数,集合(完全图)数目
for(i = ; i <= *m; i += ) {
u = n+i;//入点
v = n+i+;//出点
scanf("%d%d", &t, &s);//时间,集合中点数
while(s--) {
scanf("%d", &x);
G[u].push_back(edge(x, ));
G[x].push_back(edge(v, ));
}
G[v].push_back(edge(u, t));
}
V = n+*m;
dij(, );
dij(, n);
/*
puts("-----------------");
for(i = 1; i <= n; ++i) {
printf("%lld, %lld\n", d[0][i], d[1][i]);
}
puts("-----------------");
*/
ll mi = INF;
int cnt = ;
ll a = ;
for(i = ; i <= n; ++i) {
if((a = max(d[][i], d[][i])) < mi) {
mi = a;
}
}
printf("Case #%d: ", k);
if(mi == INF) {
printf("Evil John\n");
}
else {
int f = ;
printf("%lld\n", mi);
for(i = ; i <= n; ++i) {
a = max(d[][i], d[][i]);
if(a == mi) {
if(f) putchar(' ');
printf("%d", i);
f = ;
}
}
puts("");
}
}
return ;
}
2667ms
hdu 5521 Meeting(最短路)的更多相关文章
- HDU 5521.Meeting 最短路模板题
Meeting Time Limit: 12000/6000 MS (Java/Others) Memory Limit: 262144/262144 K (Java/Others)Total ...
- HDU 5521 Meeting(虚拟节点+最短路)
Meeting Time Limit: 12000/6000 MS (Java/Others) Memory Limit: 262144/262144 K (Java/Others) Total ...
- HDU 5521 Meeting【最短路】
今天旁观了Angry_Newbie的模拟区域赛(2015shenyang) 倒着看最先看的M题,很明显的最短路问题,在我看懂的时候他们已经开始敲B了. 后来听说D过了很多人.. D题一看是个博弈,给了 ...
- HDU 5521 Meeting (最短路,dijstra)
题意:有N个点,两个人,其中一个人住在点1,另一个人住在点n,有M个点集,集合内的数表示任意两点的距离为dis ,现在问,如果两个人要见面, 需要最短距离是多少,有哪几个点能被当成见面点. 析:分别对 ...
- HDU 5521 [图论][最短路][建图灵感]
/* 思前想后 还是决定坚持写博客吧... 题意: n个点,m个集合.每个集合里边的点是联通的且任意两点之间有一条dis[i]的边(每个集合一个dis[i]) 求同时从第1个点和第n个点出发的两个人相 ...
- HDU 5521 Meeting
2015 ACM / ICPC 沈阳站现场赛 M题 最短路 设置N+M个节点,前N个节点是Block,后M个节点是Set,每一组Set中的点向该Set连边,从1和n开始分别求最短路.注意爆int. # ...
- HDU - 5521 Meeting (Dijkstra)
思路: 看了好久才看懂题意,文中给了n个点,有m个集合,每个集合有s个点,集合内的每两个点之间有一个权值为t的边,现在有两个人,要从1号点,和n号点,走到同一个顶点,问最少花费以及花费最少的点. 那就 ...
- HDU 5521:Meeting(最短路)
http://acm.hdu.edu.cn/showproblem.php?pid=5521 Meeting Problem Description Bessie and her friend E ...
- hdu 5521 最短路
Meeting Time Limit: 12000/6000 MS (Java/Others) Memory Limit: 262144/262144 K (Java/Others)Total ...
随机推荐
- HDFS Java Client对hdfs文件增删查改
step1:增加依赖 pom.xml ... <!-- https://mvnrepository.com/artifact/org.apache.hadoop ...
- jQuery 数据 - jQuery.data() 方法
打印出 hi
- Knockout.js hasFocus
<head> <meta http-equiv="Content-Type" content="text/html; charset=utf-8&quo ...
- 关于C#委托和Lambda表达式
关于C#委托和Lambda表达式 1.C#委托和Lambda表达式结合定义方法非常方便 在定一次性方法有很好的应用 delegate void getProductNoReturn(int a); d ...
- Vue2.0学习笔记:Vue事件修饰符的使用
事件处理 如果需要在内联语句处理器中访问原生DOM事件.可以使用特殊变量$event,把它传入到methods中的方法中. 在Vue中,事件修饰符处理了许多DOM事件的细节,让我们不再需要花大量的时间 ...
- linux的目录结构及文件基本操作
1. linux的文件组织目录结构 linux的目录与window的区别 win以存储介质为主,主要以盘符及分区实现文件 管理,再下面才是目录. linux以树形目录结构的形式来构造整个系统,每一个目 ...
- XML文档的解析—dom4j
XML为可扩展标记语言,它主要是用来保存数据,做配置文件,数据传输载体等.其实就是一个后缀名为.xml的文件. XML命名规则 名称可以含字母.数字以及其他的字符 名称不能以数字或者标点符号开始 名称 ...
- linux端口开放
netstat 查看端口开放情况: netstat 命令用于显示各种网络相关信息,如网络连接,路由表,接口状态 (Interface Statistics),masquerade 连接,多播成员 ...
- Spring中的BeanFactory和ApplicationContext的区别
我用一个例子去测试BeanFactory和ApplicationContext的区别 首先建立一个bean public class User { //声明无参构造,打印一句话,监测对象创建时机 pu ...
- BZOJ1053 [HAOI2007]反素数 & BZOJ3085 反质数加强版SAPGAP
BZOJ 1053 Description 对于任何正整数x,其约数的个数记作g(x).例如g(1)=1.g(6)=4.如果某个正整数x满足:g(x)>g(i) 0<i<x ,则称x ...