bzoj1093[ZJOI2007]最大半连通子图(tarjan+拓扑排序+dp)
Description
一个有向图G=(V,E)称为半连通的(Semi-Connected),如果满足:?u,v∈V,满足u→v或v→u,即对于图中任意
两点u,v,存在一条u到v的有向路径或者从v到u的有向路径。若G'=(V',E')满足V'?V,E'是E中所有跟V'有关的边,
则称G'是G的一个导出子图。若G'是G的导出子图,且G'半连通,则称G'为G的半连通子图。若G'是G所有半连通子图
中包含节点数最多的,则称G'是G的最大半连通子图。给定一个有向图G,请求出G的最大半连通子图拥有的节点数K
,以及不同的最大半连通子图的数目C。由于C可能比较大,仅要求输出C对X的余数。
Input
第一行包含两个整数N,M,X。N,M分别表示图G的点数与边数,X的意义如上文所述接下来M行,每行两个正整
数a, b,表示一条有向边(a, b)。图中的每个点将编号为1,2,3…N,保证输入中同一个(a,b)不会出现两次。N ≤1
00000, M ≤1000000;对于100%的数据, X ≤10^8
Output
应包含两行,第一行包含一个整数K。第二行包含整数C Mod X.
Sample Input
1 2
2 1
1 3
2 4
5 6
6 4
Sample Output
3
program semi(input,output);
type
etype=record
t,next:longint;
end;
var
e,c:array[..]of etype;
last,dfn,low,q,hav,belong,r,a,f,g,vis:array[..]of longint;
inq:array[..]of boolean;
n,m,p,i,j,u,v,cnt,tot,top,h,t,max,ans:longint;
procedure add(u,v:longint);
begin
inc(cnt);e[cnt].t:=v;e[cnt].next:=last[u];last[u]:=cnt;
end;
procedure tarjan(k:longint);
var
i:longint;
begin
inc(cnt);dfn[k]:=cnt;low[k]:=cnt;
inc(top);q[top]:=k;inq[k]:=true;
i:=last[k];
while i<> do
begin
if dfn[e[i].t]= then begin tarjan(e[i].t);if low[e[i].t]<low[k] then low[k]:=low[e[i].t]; end
else if inq[e[i].t] and (dfn[e[i].t]<low[k]) then low[k]:=dfn[e[i].t];
i:=e[i].next;
end;
if low[k]=dfn[k] then
begin
inc(tot);hav[tot]:=;
while q[top]<>k do begin inq[q[top]]:=false;belong[q[top]]:=tot;inc(hav[tot]);dec(top); end;
dec(top);inq[k]:=false;belong[k]:=tot;inc(hav[tot]);
end;
end;
procedure ins(u,v:longint);
begin
inc(cnt);c[cnt].t:=v;c[cnt].next:=a[u];a[u]:=cnt;inc(r[v]);
end;
begin
assign(input,'semi.in');assign(output,'semi.out');reset(input);rewrite(output);
readln(n,m,p);
cnt:=;fillchar(last,sizeof(last),);
for i:= to m do begin readln(u,v);add(u,v); end;
fillchar(dfn,sizeof(dfn),);tot:=;
for i:= to n do if dfn[i]= then begin cnt:=;top:=;tarjan(i); end;
cnt:=;fillchar(a,sizeof(a),);fillchar(r,sizeof(r),);
for i:= to n do
begin
j:=last[i];
while j<> do
begin
if belong[i]<>belong[e[j].t] then ins(belong[i],belong[e[j].t]);
j:=e[j].next;
end;
end;
h:=;t:=;
for i:= to tot do
begin
if r[i]= then begin inc(t);q[t]:=i; end;
f[i]:=hav[i];g[i]:=;
end;
fillchar(vis,sizeof(vis),);
while h<t do
begin
inc(h);i:=a[q[h]];
while i<> do
begin
dec(r[c[i].t]);if r[c[i].t]= then begin inc(t);q[t]:=c[i].t; end;
if vis[c[i].t]<>q[h] then
begin
if f[q[h]]+hav[c[i].t]>f[c[i].t] then begin f[c[i].t]:=f[q[h]]+hav[c[i].t];g[c[i].t]:=g[q[h]]; end
else if f[q[h]]+hav[c[i].t]=f[c[i].t] then g[c[i].t]:=(g[c[i].t]+g[q[h]]) mod p;
vis[c[i].t]:=q[h];
end;
i:=c[i].next;
end;
end;
max:=;
for i:= to tot do if f[i]>max then begin max:=f[i];ans:=g[i]; end else if f[i]=max then ans:=(ans+g[i]) mod p;
writeln(max);writeln(ans);
close(input);close(output);
end.
bzoj1093[ZJOI2007]最大半连通子图(tarjan+拓扑排序+dp)的更多相关文章
- 【bzoj1093】[ZJOI2007]最大半连通子图 Tarjan+拓扑排序+dp
题目描述 一个有向图G=(V,E)称为半连通的(Semi-Connected),如果满足:对于u,v∈V,满足u→v或v→u,即对于图中任意两点u,v,存在一条u到v的有向路径或者从v到u的有向路径. ...
- BZOJ1093: [ZJOI2007]最大半连通子图(tarjan dp)
题意 一个有向图G=(V,E)称为半连通的(Semi-Connected),如果满足:?u,v∈V,满足u→v或v→u,即对于图中任意两点u,v,存在一条u到v的有向路径或者从v到u的有向路径.若G' ...
- bzoj 1093 最大半连通子图 - Tarjan - 拓扑排序 - 动态规划
一个有向图G=(V,E)称为半连通的(Semi-Connected),如果满足:?u,v∈V,满足u→v或v→u,即对于图中任意两点u,v,存在一条u到v的有向路径或者从v到u的有向路径.若G'=(V ...
- BZOJ1093 ZJOI2007最大半连通子图(缩点+dp)
发现所谓半连通子图就是缩点后的一条链之后就是个模板题了.注意缩点后的重边.写了1h+真是没什么救了. #include<iostream> #include<cstdio> # ...
- BZOJ 1093: [ZJOI2007]最大半连通子图( tarjan + dp )
WA了好多次... 先tarjan缩点, 然后题意就是求DAG上的一条最长链. dp(u) = max{dp(v)} + totu, edge(u,v)存在. totu是scc(u)的结点数. 其实就 ...
- Luogu P2272 [ZJOI2007]最大半连通子图(Tarjan+dp)
P2272 [ZJOI2007]最大半连通子图 题意 题目描述 一个有向图\(G=(V,E)\)称为半连通的\((Semi-Connected)\),如果满足:\(\forall u,v\in V\) ...
- 【tarjan 拓扑排序 dp】bzoj1093: [ZJOI2007]最大半连通子图
思维难度不大,关键考代码实现能力.一些细节还是很妙的. Description 一个有向图G=(V,E)称为半连通的(Semi-Connected),如果满足:?u,v∈V,满足u→v或v→u,即对于 ...
- [luogu2272 ZJOI2007] 最大半连通子图 (tarjan缩点 拓扑排序 dp)
传送门 题目描述 一个有向图G=(V,E)称为半连通的(Semi-Connected),如果满足:?u,v∈V,满足u→v或v→u,即对于图中任意两点u,v,存在一条u到v的有向路径或者从v到u的有向 ...
- BZOJ1093 [ZJOI2007]最大半连通子图 【tarjan缩点 + DAG最长路计数】
题目 一个有向图G=(V,E)称为半连通的(Semi-Connected),如果满足:?u,v∈V,满足u→v或v→u,即对于图中任意 两点u,v,存在一条u到v的有向路径或者从v到u的有向路径.若G ...
随机推荐
- [WC2010][BZOJ1758]重建计划-[二分+分数规划+点分治]
Description 传送门 Solution 看到那个式子,显然想到分数规划...(不然好难呢) 然后二分答案,则每条边的权值设为g(e)-ans.最后要让路径长度在[L,U]范围内的路径权值&g ...
- 如何注册Uber司机(全国版最新最详细注册流程)
滴快车单单2.5倍,注册地址:http://www.udache.com/ 如何注册Uber司机(全国版最新最详细注册流程)/月入2万/不用抢单:http://didi-uber.com/archiv ...
- 【转载】DXUT进阶
原文:DXUT进阶 概要 这个指南涵盖了更多DXUT的高级应用. 这个指南里的大部分功能是可选的, 为了以最小的代价来增强你的应用程序. DXUT提供了一个简单的基于GUI系统的精灵和一个设备设置对话 ...
- 【SDOI2014】数表
题面 题解 不管$a$的限制 我们要求的东西是:($\sigma(x)$是$x$的约数个数和) $ \sum_{i=1}^n\sum_{j=1}^m\sigma(gcd(i,j)) $ 设$f(x)= ...
- (EX)CRT总结
(EX)CRT总结 这个东西是联赛的时候搞的,早就忘了,写篇博客复习一下 中国剩余定理(crt) 给定\(a\).\(m\) \[ x\equiv a_1(mod\;m_1)\\ x\equiv a_ ...
- 3809: Gty的二逼妹子序列
3809: Gty的二逼妹子序列 链接 分析: 和这道AHOI2013 作业差不多.权值是1~n的,所以对权值进行分块.$O(1)$修改,$O(\sqrt n)$查询. 代码: #include< ...
- 教你thinkphp5怎么配置二级域名
有些项目要将移动端和PC端分离开来,比如访问xxx.com,展示的是PC端的页面.而访问m.xxx.com,展示的是移动端的页面.thinkphp源码需要多多学习,这里记录一下知识点,顺便分享给需要的 ...
- Testing Harbor REST API on Swagger
先贴官方地址,我的做法差不多 https://github.com/goharbor/harbor/blob/master/docs/configure_swagger.md 1.下载对应资源 wge ...
- gulp4.0 存在的错误信息 The following tasks did not complete: default,Did you forget to signal async completion?
当gulp为如下代码的时候: // 以下代码会执行在node环境下 const gulp = require( "gulp" ); // 创建一个gulp的任务 gulp.task ...
- 子元素设置margin-top后,父元素跟随下移的问题
子元素设置margin-top后,父元素跟随下移的问题 <!DOCTYPE html> <html lang="en"> <head> < ...