[2016北京集训测试赛5]azelso-[概率/期望dp]
Description
Solution
感谢大佬的博客https://www.cnblogs.com/ywwyww/p/8511141.html
定义dp[i]为[p[i],p[i+1])的期望经过次数,f[i]为处理完事件i后不会再回到i点或以前,直接到终点的概率。
则$dp[i]=1+(1-f[i])+(1-f[i])^{2}+......=\frac{1}{f[i]}$
设事件i+1的胜率为k。
1:下一个事件是敌人,则f[i]=kf[i+1],即$dp[i]=\frac{dp[i+1]}{k}$。
2:下一个事件是旗子,则$f[i]=f[i+1](1+k(1-f[i+1])+k^{2}(1-f[i+1]^{2}+...)=\frac{f[i+1]}{1-k+kf[i+1]}$
把f替换为dp得$dp[i]=(1-k)dp[i+1]+k$
Code
#include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
using namespace std;
const int mod=1e9+;
typedef long long ll;
ll ksm(ll x,ll k)
{
ll re=;
while (k)
{
if (k&) re=re*x%mod;
k>>=;
x=x*x%mod;
}
return re;
}
ll h,n;
ll p[],a[],b[];char c[][];
ll dp[],ans=;
int main()
{
scanf("%lld%lld",&h,&n);
for (int i=;i<=n;i++)
{
scanf("%s%lld%lld%lld",c[i],&p[i],&a[i],&b[i]);
a[i]=a[i]*ksm(b[i],mod-)%mod;
}
dp[n]=;
for (int i=n;i;i--)
if (c[i][]=='X') dp[i-]=dp[i]*ksm(a[i],mod-)%mod;
else dp[i-]=((-a[i]+mod)%mod*dp[i]%mod+a[i])%mod;
p[n+]=h;
for (int i=;i<=n;i++) ans=(ans+(p[i+]-p[i])%mod*dp[i]%mod)%mod;
cout<<ans;
}
[2016北京集训测试赛5]azelso-[概率/期望dp]的更多相关文章
- 【2016北京集训测试赛】azelso
[吐槽] 首先当然是要orzyww啦 以及orzyxq奇妙顺推很强qwq 嗯..怎么说呢虽然说之前零零散散做了一些概d的题目但是总感觉好像并没有弄得比较明白啊..(我的妈果然蒟蒻) 这题的话可以说是难 ...
- [2016北京集训测试赛7]isn-[树状数组+dp+容斥]
Description Solution 定义dp[i][j]为在1到i个数中选了j个数,并且保证选了i的选法总数. dp[i][j]为所有满足A[k]>A[i]的k(k<i)的dp[k] ...
- 2016北京集训测试赛(十)Problem A: azelso
Solution 我们把遇到一个旗子或者是遇到一个敌人称为一个事件. 这一题思路的巧妙之处在于我们要用\(f[i]\)表示从\(i\)这个事件一直走到终点这段路程中, \(i\)到\(i + 1\)这 ...
- 【2016北京集训测试赛(十)】 Azelso (期望DP)
Time Limit: 1000 ms Memory Limit: 256 MB Description 题解 状态表示: 这题的状态表示有点难想...... 设$f_i$表示第$i$个事件经过之 ...
- 【2016北京集训测试赛(二)】 thr (树形DP)
Description 题解 (这可是一道很早就碰到的练习题然后我不会做不想做,没想到在Contest碰到欲哭无泪......) 题目大意是寻找三点对的个数,使得其中的三个点两两距离都为d. 问题在于 ...
- 【2016北京集训测试赛(八)】 crash的数列 (思考题)
Description 题解 题目说这是一个具有神奇特性的数列!这句话是非常有用的因为我们发现,如果套着这个数列的定义再从原数列引出一个新数列,它居然还是一样的...... 于是我们就想到了能不能用多 ...
- 【2016北京集训测试赛(十六)】 River (最大流)
Description Special Judge Hint 注意是全程不能经过两个相同的景点,并且一天的开始和结束不能用同样的交通方式. 题解 题目大意:给定两组点,每组有$n$个点,有若干条跨组 ...
- 【2016北京集训测试赛】river
HINT 注意是全程不能经过两个相同的景点,并且一天的开始和结束不能用同样的交通方式. [吐槽] 嗯..看到这题的想法的话..先想到了每个点的度为2,然后就有点不知所措了 隐隐约约想到了网络流,但并没 ...
- [2016北京集训测试赛17]crash的游戏-[组合数+斯特林数+拉格朗日插值]
Description Solution 核心思想是把组合数当成一个奇怪的多项式,然后拉格朗日插值..:哦对了,还要用到第二类斯特林数(就是把若干个球放到若干个盒子)的一个公式: $x^{n}=\su ...
随机推荐
- memcached的操作
memcached是一个高性能的分布式内存对象缓存系统,用于动态web应用以减轻数据库负载.它通过在内存中缓存数据和对象来减少读取数据库次数,从而提高动态.数据库驱动网站的速度.memcached基于 ...
- fill & stroke
- (void)stroke Draws a line along the receiver’s path using the current drawing properties. - (void) ...
- 关于C#读取xml小例子
1.首先这是一个xml文件<?xml version="1.0" encoding="utf-8"?><Document> <Ev ...
- 新闻cms管理系统(三) ------菜单管理
1.前期准备工作 (1)模板介绍 添加菜单的模板页面 菜单管理首页: 添加菜单页面: (2)公共类引入介绍 公共函数文件的引入(位置: Application/Admin/Controller/Com ...
- Jmeter--thrift接口压测,调用jar包失败报错:java.lang.NoSuchMethodError:
调用thrift接口压测的jar包,出现了错误:java.lang.NoSuchMethodError: 错误可能的原因: 有这个类,该类真的没有这个方法 有这个类,而且有好几个,他们之间发生了冲突 ...
- CentOS查看卸载openjdk
1.查看openjdk版本 java -versionjava version "1.7.0_51" OpenJDK Runtime Environment (rhel-2.4.5 ...
- 求1!+2!+3!+4!+5!+6!+7!+8!+9!+10!+...+N! N阶阶乘求和算法 JAVA C Python
一行代码算出1!+2!+3!+4!+5!+6!+7!+8!+9!+10!+...+N! N阶阶乘求和 时间复杂度为O(n) 空间复杂度为O(1) 对于任意正整数N 求1!-N!一行算出和给定求1 ...
- 小程序发微信红包后端Nodejs实现
前提条件 1.有一个微信开放平台 https://open.weixin.qq.com/ 2.有一个微信公众平台 https://mp.weixin.qq.com 并且开通微信支付 3.有一个微信小 ...
- JAVA中基本类型和字符串之间的转换
一.基本类型转换成字符串有三种方法: int c = 10; 1.使用包转类的toString()方法 String str1 = Integer.toString(c); 2.使用String类的v ...
- iframe空白
优酷网页上复制的通用代码用来播放视频,浏览器和谷歌模拟器正常,但是发布后手机上打开一片空白,一直以为是苹果手机不支持iframe,最后发现是由于iframe播放链接是http的,而我们网页是https ...