【LG3723】[AHOI2017/HNOI2017]礼物
【LG3723】[AHOI2017/HNOI2017]礼物
题面
题解
首先我们将\(c\)看作一个可以为负的整数,那么我们就可以省去讨论在哪个手环加\(c\)的繁琐步骤了
设我们当前已经选好了手环的顺序
则
=\sum_{i=1}^nx_i^2+\sum_{i=1}^ny_i^2+n*c^2+2c\sum_{i=1}^n(x_i-y_i)-2\sum_{i=1}^nx_i*y_i
\]
实际上,因为前面都是定值(\(C\)的取值可以枚举),所以要求
\]
最大就行了。
我们将\(y_i\)反向,那么原式就是一个卷积。
这里有个很巧妙的\(trick\):将\(y\)再倍长一下,取\(x*y\)中第\(n+1\)到\(2n\)项的最小值即可,这样
就很巧妙地模拟了翻转的过程
代码
#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <cmath>
#include <algorithm>
using namespace std;
inline int gi() {
register int data = 0, w = 1;
register char ch = 0;
while (!isdigit(ch) && ch != '-') ch = getchar();
if (ch == '-') w = -1, ch = getchar();
while (isdigit(ch)) data = 10 * data + ch - '0', ch = getchar();
return w * data;
}
const double PI = acos(-1.0);
const int MAX_N = 2000005;
struct Complex { double x, y; } a[MAX_N], b[MAX_N];
inline Complex operator + (const Complex &l, const Complex &r) { return (Complex){l.x + r.x, l.y + r.y}; }
inline Complex operator - (const Complex &l, const Complex &r) { return (Complex){l.x - r.x, l.y - r.y}; }
inline Complex operator * (const Complex &l, const Complex &r) { return (Complex){l.x * r.x - l.y * r.y, l.y * r.x + l.x * r.y}; }
int n, m, N, M, s1[MAX_N], s2[MAX_N], r[MAX_N], res[MAX_N];
void FFT(Complex *p, int op) {
for (int i = 0; i < N; i++) if (i < r[i]) swap(p[i], p[r[i]]);
for (int i = 1; i < N; i <<= 1) {
Complex rot = (Complex){cos(PI / i), op * sin(PI / i)};
for (int tmp = i << 1, j = 0; j < N; j += tmp) {
Complex w = (Complex){1, 0};
for (int k = 0; k < i; k++, w = w * rot) {
Complex x = p[j + k], y = w * p[i + j + k];
p[j + k] = x + y, p[i + j + k] = x - y;
}
}
}
}
void Prepare () {
N = n - 1, M = n + n - 1;
for (int i = 0; i <= N; i++) a[i].x = s1[i + 1];
for (int i = 0; i < n; i++) b[i].x = s2[n - i];
for (int i = 0; i < n; i++) b[i + n] = b[i];
int P = 0;
for (M += N, N = 1; N <= M; N <<= 1, ++P) ;
for (int i = 0; i < N; i++) r[i] = (r[i >> 1] >> 1) | ((i & 1) << (P - 1));
FFT(a, 1), FFT(b, 1);
for (int i = 0; i < N; i++) a[i] = a[i] * b[i];
FFT(a, -1);
for (int i = 0; i <= M; i++) res[i] = (int)(a[i].x / N + 0.5);
}
int main () {
n = gi(), m = gi();
for (int i = 1; i <= n; i++) s1[i] = gi();
for (int i = 1; i <= n; i++) s2[i] = gi();
Prepare();
int p1 = 0, p2 = 0, ans = 1e9, tmp1 = 0, tmp2 = 0, tt = -1e9;
for (int i = 1; i <= n; i++) p1 += s1[i] * s1[i], p2 += s2[i] * s2[i], tmp1 += s1[i], tmp2 += s2[i];
for (int i = n - 1; i < n + n; i++) tt = max(tt, res[i]);
for (int C = -m; C <= m; C++) {
int tot = p1 + p2 + n * C * C + 2 * C * (tmp1 - tmp2) - 2 * tt;
ans = min(tot, ans);
}
printf("%d\n", ans);
return 0;
}
【LG3723】[AHOI2017/HNOI2017]礼物的更多相关文章
- 解题:AHOI2017/HNOI2017 礼物
题面 先不管旋转操作,只考虑增加亮度这个操作.显然这个玩意的影响是相对于$x,y$固定的,所以可以枚举增加的亮度然后O(1)算出来.为了方便我们把这个操作换种方法表示,只让一个手环改变$[-m,m]$ ...
- bzoj 4827: [Hnoi2017]礼物 [fft]
4827: [Hnoi2017]礼物 题意:略 以前做的了 化一化式子就是一个卷积和一些常数项 我记着确定调整值还要求一下导... #include <iostream> #include ...
- P3723 [AH2017/HNOI2017]礼物
题目链接:[AH2017/HNOI2017]礼物 题意: 两个环x, y 长度都为n k可取 0 ~ n - 1 c可取任意值 求 ∑ ( x[i] - y[(i + k) % n + 1] ...
- 【BZOJ4827】 [Hnoi2017]礼物
BZOJ4827 [Hnoi2017]礼物 Solution 如果一串数的增加,不就等于另一串数减吗? 那么我们可以把答案写成另一个形式: \(ans=\sum_{i=1}^n(x_i-y_i+C)^ ...
- 4827: [Hnoi2017]礼物
4827: [Hnoi2017]礼物 链接 分析: 求最小的$\sum_{i=1}^{n}(x_i-y_i)^2$ 设旋转了j位,每一位加上了c. $\sum\limits_{i=1}^{n}(x_{ ...
- 洛谷 P3723 [AH2017/HNOI2017]礼物 解题报告
P3723 [AH2017/HNOI2017]礼物 题目描述 我的室友最近喜欢上了一个可爱的小女生.马上就要到她的生日了,他决定买一对情侣手环,一个留给自己,一个送给她.每个手环上各有 \(n\) 个 ...
- [BZOJ4827][Hnoi2017]礼物(FFT)
4827: [Hnoi2017]礼物 Time Limit: 20 Sec Memory Limit: 512 MBSubmit: 1315 Solved: 915[Submit][Status] ...
- [Luogu P3723] [AH2017/HNOI2017]礼物 (FFT 卷积)
题面 传送门:洛咕 Solution 调得我头大,我好菜啊 好吧,我们来颓柿子吧: 我们可以只旋转其中一个手环.对于亮度的问题,因为可以在两个串上增加亮度,我们也可以看做是可以为负数的. 所以说,我们 ...
- 笔记-[AH2017/HNOI2017]礼物
笔记-[AH2017/HNOI2017]礼物 [AH2017/HNOI2017]礼物 \[\begin{split} ans_i=&\sum_{j=1}^n(a_j-b_j+i)^2\\ =& ...
随机推荐
- A blog about Core Animation and other iOS graphics framework
A blog about Core Animation and other iOS graphics frameworks. https://www.calayer.com/
- 108.UIView关于布局和约束的方法(AutoLayout)
http://blog.csdn.net/wangyanchang21/article/details/52270136 关于布局(UIViewHierarchy) 1.layoutSubviews ...
- socket的双重属性
1)api属性: 2)通信链路的端点属性.
- BZOJ3791:作业(DP)
Description 众所周知,白神是具有神奇的能力的. 比如说,他对数学作业说一声“数”,数学作业就会出于畏惧而自己完成:对语文作业说一声“语”,语文作业就会出于畏惧而自己完成. 今天,语文老师和 ...
- 【Java123】Yaml格式
yaml文件与java bean互转 https://blog.csdn.net/z04915231/article/details/60143947 Yaml转换list,json,map工具类 h ...
- 使用Azcopy在Azure上进行HBase的冷热备份还原
场景 HBase表TaskLog中有20.55G数据(20553078551Byte),目前存放在热存储中,现在要移至冷热储,并进行还原. HBase目录:hbase/data/default 冷目录 ...
- python文件操作指令
原文地址:http://www.cnblogs.com/rollenholt/archive/2012/04/23/2466179.html 常用的文件操作指令: python中对文件.文件夹(文件操 ...
- javascript-对象搜索算法挑战
对象搜索算法挑战 function where(collection, source) { var arr = []; var status = null; // What's in a name? ...
- H.264的码率控制:CBR和VBR
CBR: Constants Bits Rate, 静态比特率. 比特率在流的进行过程中基本保持恒定并且接近目标比特率,当对复杂内容编码时质量会下降. 在流式播放方案中使用CBR编码最为有效;优点是带 ...
- ASP.NET MVC & WebApi 中实现Cors来让Ajax可以跨域访问 (转载)
什么是Cors? CORS是一个W3C标准,全称是"跨域资源共享"(Cross-origin resource sharing).它允许浏览器向跨源服务器,发出XMLHttpReq ...