[转]0.python:scikit-learn基本用法
经Edwin Chen的推荐,认识了scikit-learn这个非常强大的python机器学习工具包。这个帖子作为笔记。(其实都没有笔记的意义,因为他家文档做的太好了,不过还是为自己记记吧,为以后节省若干分钟)。如果有幸此文被想用scikit-learn的你看见,也还是非常希望你去它们的主页看文档。主页中最值得关注的几个部分:User Guide几乎是machine learning的索引,各种方法如何使用都有,Reference是各个类的用法索引。
S1. 导入数据
大多数数据的格式都是M个N维向量,分为训练集和测试集。所以,知道如何导入向量(矩阵)数据是最为关键的一点。这里要用到numpy来协助。假设数据格式是:
Stock prices indicator1 indicator2 2.0 123 1252 1.0 .. .. .. . . . |
导入代码参考:
import numpy as np f = open("filename.txt") f.readline() # skip the header data = np.loadtxt(f) X = data[:, 1:] # select columns 1 through end y = data[:, 0] # select column 0, the stock price |
libsvm格式的数据导入:
>>> from sklearn.datasets import load_svmlight_file >>> X_train, y_train = load_svmlight_file("/path/to/train_dataset.txt") ... >>>X_train.todense()#将稀疏矩阵转化为完整特征矩阵 |
更多格式数据导入与生成参考:http://scikit-learn.org/stable/datasets/index.html
S2. Supervised Classification 几种常用方法:
Logistic Regression
>>> from sklearn.linear_model import LogisticRegression >>> clf2 = LogisticRegression().fit(X, y) >>> clf2 LogisticRegression(C=1.0, intercept_scaling=1, dual=False, fit_intercept=True, penalty='l2', tol=0.0001) >>> clf2.predict_proba(X_new) array([[ 9.07512928e-01, 9.24770379e-02, 1.00343962e-05]]) |
Linear SVM (Linear kernel)
>>> from sklearn.svm import LinearSVC >>> clf = LinearSVC() >>> clf.fit(X, Y) >>> X_new = [[ 5.0, 3.6, 1.3, 0.25]] >>> clf.predict(X_new)#reuslt[0] if class label array([0], dtype=int32) |
SVM (RBF or other kernel)
>>> from sklearn import svm >>> clf = svm.SVC() >>> clf.fit(X, Y) SVC(C=1.0, cache_size=200, class_weight=None, coef0=0.0, degree=3, gamma=0.0, kernel='rbf', probability=False, shrinking=True, tol=0.001, verbose=False) >>> clf.predict([[2., 2.]]) array([ 1.]) |
Naive Bayes (Gaussian likelihood)
from sklearn.naive_bayes import GaussianNB >>> from sklearn import datasets >>> gnb = GaussianNB() >>> gnb = gnb.fit(x, y) >>> gnb.predict(xx)#result[0] is the most likely class label |
Decision Tree (classification not regression)
>>> from sklearn import tree >>> clf = tree.DecisionTreeClassifier() >>> clf = clf.fit(X, Y) >>> clf.predict([[2., 2.]]) array([ 1.]) |
Ensemble (Random Forests, classification not regression)
>>> from sklearn.ensemble import RandomForestClassifier >>> clf = RandomForestClassifier(n_estimators=10) >>> clf = clf.fit(X, Y) >>> clf.predict(X_test) |
S3. Model Selection (Cross-validation)
手工分training data和testing data当然可以了,但是更方便的方法是自动进行,scikit-learn也有相关的功能,这里记录下cross-validation的代码:
>>> from sklearn import cross_validation >>> from sklearn import svm >>> clf = svm.SVC(kernel='linear', C=1) >>> scores = cross_validation.cross_val_score(clf, iris.data, iris.target, cv=5)#5-fold cv #change metrics >>> from sklearn import metrics >>> cross_validation.cross_val_score(clf, iris.data, iris.target, cv=5, score_func=metrics.f1_score) #f1 score: http://en.wikipedia.org/wiki/F1_score |
more about cross-validation: http://scikit-learn.org/stable/modules/cross_validation.html
Note: if using LR, clf = LogisticRegression().
S4. Sign Prediction Experiment
数据集,EPINIONS,有user与user之间的trust与distrust关系,以及interaction(对用户评论的有用程度打分)。
Features:网络拓扑feature参考"Predict positive and negative links in online social network",用户交互信息feature。
一共设了3类instances,每类3次训练+测试,训练数据是测试数据的10倍,~80,000个29/5/34维向量,得出下面一些结论。时间 上,GNB最快(所有instance都是2~3秒跑完),DT非常快(有一类instance只用了1秒,其他都要4秒),LR很快(三类 instance的时间分别是2秒,5秒,~30秒),RF也不慢(一个instance9秒,其他26秒),linear kernel的SVM要比LR慢好几倍(所有instance要跑30多秒),RBF kernel的SVM比linear SVM要慢20+倍到上百倍(第一个instance要11分钟,第二个instance跑了近两个小时)。准确度上 RF>LR>DT>GNB>SVM(RBF kernel)>SVM(Linear kernel)。GNB和SVM(linear kernel)、SVM(rbf kernel)在第二类instance上差的比较远(10~20个百分点),LR、DT都差不多,RF确实体现了ENSEMBLE方法的强大,比LR有 较为显著的提升(近2~4个百分点)。(注:由于到该文提交为止,RBF版的SVM才跑完一次测试中的两个instance,上面结果仅基于此。另外,我 还尝试了SGD等方法,总体上都不是特别理想,就不记了)。在feature的有效性上面,用户交互feature比网络拓扑feature更加有效百分 五到百分十。
S5.通用测试源代码
这里是我写的用包括上述算法在内的多种算法的自动分类并10fold cross-validation的python代码,只要输入文件保持本文开头所述的格式(且不包含注释信息),即可用多种不同算法测试分类效果。
[转]0.python:scikit-learn基本用法的更多相关文章
- Scikit Learn: 在python中机器学习
转自:http://my.oschina.net/u/175377/blog/84420#OSC_h2_23 Scikit Learn: 在python中机器学习 Warning 警告:有些没能理解的 ...
- scikit learn 模块 调参 pipeline+girdsearch 数据举例:文档分类 (python代码)
scikit learn 模块 调参 pipeline+girdsearch 数据举例:文档分类数据集 fetch_20newsgroups #-*- coding: UTF-8 -*- import ...
- 笨办法学 Python (Learn Python The Hard Way)
最近在看:笨办法学 Python (Learn Python The Hard Way) Contents: 译者前言 前言:笨办法更简单 习题 0: 准备工作 习题 1: 第一个程序 习题 2: 注 ...
- python 中del 的用法
python中的del用法比较特殊,新手学习往往产生误解,弄清del的用法,可以帮助深入理解python的内存方面的问题. python的del不同于C的free和C++的delete. 由于pyth ...
- (原创)(三)机器学习笔记之Scikit Learn的线性回归模型初探
一.Scikit Learn中使用estimator三部曲 1. 构造estimator 2. 训练模型:fit 3. 利用模型进行预测:predict 二.模型评价 模型训练好后,度量模型拟合效果的 ...
- (原创)(四)机器学习笔记之Scikit Learn的Logistic回归初探
目录 5.3 使用LogisticRegressionCV进行正则化的 Logistic Regression 参数调优 一.Scikit Learn中有关logistics回归函数的介绍 1. 交叉 ...
- 【python】 del 的用法
转自 https://blog.csdn.net/love1code/article/details/47276683 python中的del用法比较特殊,新手学习往往产生误解,弄清del的用法,可以 ...
- Python Numpy shape 基础用法(转自他人的博客,如涉及到侵权,请联系我)
Python Numpy shape 基础用法 shape函数是numpy.core.fromnumeric中的函数,它的功能是读取矩阵的长度,比如shape[0]就是读取矩阵第一维度的长度.它的输入 ...
- python中argparse模块用法实例详解
python中argparse模块用法实例详解 这篇文章主要介绍了python中argparse模块用法,以实例形式较为详细的分析了argparse模块解析命令行参数的使用技巧,需要的朋友可以参考下 ...
- [转]使用python来操作redis用法详解
转自:使用python来操作redis用法详解 class CommRedisBase(): def __init__(self): REDIS_CONF = {} connection_pool = ...
随机推荐
- Codeforces Round #372 (Div. 1) A. Plus and Square Root 数学题
A. Plus and Square Root 题目连接: http://codeforces.com/contest/715/problem/A Description ZS the Coder i ...
- Eclipse中执行Maven命令时控制台输出乱码
Maven 默认编码为 GBK: 在 Eclipse 控制台输出乱码: 解决方法:将以下代码添加到 pom.xml 的 <project> 节点下: <project> …… ...
- JDK 动态代理的简单理解
动态代理 代理模式是 Java 中的常用设计模式,代理类通过调用被代理类的相关方法,提供预处理.过滤.事后处理等服务,动态代理及通过反射机制动态实现代理机制.JDK 中的 java.lang.refl ...
- 微信小程序自定义音频组件,自定义滚动条,单曲循环,循环播放
小程序自定义音频组件,带滚动条 摘要:首先自定义音频组件,是因为产品有这样的需求,需要如下样式的 而微信小程序API给我们提供的就是这样的 而且产品需要小程序有后台播放功能,所以我们不考虑小程序的 a ...
- Mac 10.13安装telnet
狗日的Mac 10.13默认不自带telnet!!!苹果你以为你的操作系统真的那么平民吗,别做梦,用你只不过是为了开发!!! 安装: brew install telnet 如果你用上述方法安装不上, ...
- YAML文件中在单一文件中区分多个文件
1.在单一文件中,可用连续三个连字号(---)区分多个文件. 2.另外,还有选择性的连续三个点号( ... )用来表示文件结尾. 题外:YAML其实语法很多也很灵活,但是针对Spring支持的语法其实 ...
- 【来龙去脉系列】深入理解DIP、IoC、DI以及IoC容器
摘要 面向对象设计(OOD)有助于我们开发出高性能.易扩展以及易复用的程序.其中,OOD有一个重要的思想那就是依赖倒置原则(DIP),并由此引申出IoC.DI以及Ioc容器等概念.通过本文我们将一起学 ...
- HDU 4815 Little Tiger vs. Deep Monkey(2013长春现场赛C题)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4815 简单的DP题. #include <stdio.h> #include <st ...
- stap 命令
SystemTap accepts script as command line option or external file, for example: * Command-line script ...
- Android笔记之 网络http通信
0.在认识HTTP前先认识URL 在我们认识HTTP之前,有必要先弄清楚URL的组成,比如: http://www.******.com/china/index.htm 它的含义例如以下: 1. ht ...