UVa 674 Coin Change(完全背包)
https://vjudge.net/problem/UVA-674
题意:
计算兑换零钱的方法共有几种。
思路:
完全背包基础题。
#include<iostream>
#include<string>
#include<cstring>
#include<algorithm>
using namespace std; int d[];
int a[] = { , , , , }; int main()
{
//freopen("D:\\txt.txt", "r", stdin);
int s;
while (cin >> s)
{
memset(d, , sizeof(d));
d[] = ;
for (int i = ; i < ; i++)
{
for (int j = a[i]; j <= s; j++)
d[j] += d[j - a[i]];
}
cout << d[s] << endl;
}
return ;
}
UVa 674 Coin Change(完全背包)的更多相关文章
- UVA.674 Coin Change (DP 完全背包)
UVA.674 Coin Change (DP) 题意分析 有5种硬币, 面值分别为1.5.10.25.50,现在给出金额,问可以用多少种方式组成该面值. 每种硬币的数量是无限的.典型完全背包. 状态 ...
- UVA 674 Coin Change(dp)
UVA 674 Coin Change 解题报告 题目链接:http://acm.hust.edu.cn/vjudge/contest/view.action?cid=87730#problem/ ...
- UVA 674 Coin Change 硬币转换(完全背包,常规)
题意:有5种硬币,个数无限的,组成n元的不同方案有多少种? 思路:常规完全背包.重点在dp[0]=1,dp[j]中记录的是组成 j 元的方案数.状态转移方程dp[j+coin[i]]+=dp[j]. ...
- uva 674 Coin Change 换钱币【完全背包】
题目链接:https://vjudge.net/contest/59424#problem/A 题目大意: 有5种硬币, 面值分别为1.5.10.25.50,现在给出金额,问可以用多少种方式组成该面值 ...
- UVA 674 Coin Change (完全背包)
解法 dp表示目前的种数,要全部装满所以f[0]=1其余为0的初始化是必不可少的 代码 #include <bits/stdc++.h> using namespace std; int ...
- UVA 674 Coin Change (DP)
Suppose there are 5 types of coins: 50-cent, 25-cent, 10-cent, 5-cent, and 1-cent. We want to make c ...
- UVa 674 Coin Change【记忆化搜索】
题意:给出1,5,10,25,50五种硬币,再给出n,问有多少种不同的方案能够凑齐n 自己写的时候写出来方案数老是更少(用的一维的) 后来搜题解发现,要用二维的来写 http://blog.csdn. ...
- UVA 674 Coin Change 换硬币 经典dp入门题
题意:有1,5,10,25,50五种硬币,给出一个数字,问又几种凑钱的方式能凑出这个数. 经典的dp题...可以递推也可以记忆化搜索... 我个人比较喜欢记忆化搜索,递推不是很熟练. 记忆化搜索:很白 ...
- UVa 674: Coin Change
动态规划题.对于1,5,10,25,50五种币值的硬币,编号为0~4,存入数组cent中.数组iWay的元素iWay[k][i]表示仅使用0~i的硬币凑出k分钱的方法数,按是否使用编号为i的硬币分类, ...
随机推荐
- ROS学习笔记一(ROS的catkin工作空间)
在安装完成ROS indigo之后,需要查看环境变量是否设置正确,并通过创建一个简单的实例来验证ROS能否正常运行. 1 查看环境变量 在ROS的安装过程中,我们执行了如下命令:(此命令就是向当前用户 ...
- glob.glob()、os.path.split()函数、global和nonlocal关键字
1. glob.glob() glob模块是Python最简单的模块之一, 内容非常少, 用它可以查找符合特定规则的文件路径名, 查找文件时只会用到三个匹配符: * :匹配0个或多个字符 ? : 匹配 ...
- B*树的定义
B*树是B+树的变体,在B+树的非根和非叶子结点再增加指向兄弟的指针: B*树定义了非叶子结点关键字个数至少为(2/3)*M,即块的最低使用率为2/3(代替B+树的1/2). 所以,B*树分配新结点的 ...
- php端口号设置和查看
- MYSQL主从不同步延迟原理分析及解决方案(摘自http://www.jb51.net/article/41545.htm)
1. MySQL数据库主从同步延迟原理.要说延时原理,得从mysql的数据库主从复制原理说起,mysql的主从复制都是单线程的操作,主 库对所有DDL和DML产生binlog,binlog是顺序写,所 ...
- 010-centos上安装matlab
#001-下载matlab_R2015b和破解文件(四个)到百度云盘上下载7.6g#002-上传matlab大文件先安装vm tools,然后直接复制到虚拟机桌面#003-挂载matlab镜像并安装m ...
- c#: using Microsoft.Office.Interop.Excel 异常
解决方法: Project>Reference>右键Add Reference...>Choose Microsoft Excel 15.0 Object Library
- pm2 观察报错时 pm2 start app.js --watch
pm2 start app.js --watch[PM2][ERROR] Script already launched, add -f option to force re-execution
- pdf2swf 中文乱码问题
准备资料: 1.xpdfbin-win-3.03.zip.xpdf-chinese-simplified.tar.gz 下载地址:http://www.foolabs.com/xpdf/downloa ...
- 获取Linux时间函数
Linux下clock_gettime函数详解 要包含这头文件<time.h> 且在编译链接时需加上 -lrt ;因为在librt中实现了clock_gettime函数. --- stru ...