Spark Shuffle原理解析

一:到底什么是Shuffle?

Shuffle中文翻译为“洗牌”,需要Shuffle的关键性原因是某种具有共同特征的数据需要最终汇聚到一个计算节点上进行计算。

二:Shuffle可能面临的问题?运行Task的时候才会产生Shuffle(Shuffle已经融化在Spark的算子中了)。

1, 数据量非常大;

2, 数据如何分类,即如何Partition,Hash、Sort、钨丝计算;

3, 负载均衡(数据倾斜);

4, 网络传输效率,需要在压缩和解压缩之间做出权衡,序列化和反序列也是要考虑的问题;

说明:具体的Task进行计算的时候尽一切最大可能使得数据具备Process Locality的特性;退而求次是增加数据分片,减少每个Task处理的数据量。

三:Hash Shuffle

1, key不能是Array;

2, Hash Shuffle不需要排序,此时从理论上讲就节省了Hadoop MapReduce中进行Shuffle需要排序时候的时间浪费,因为实际生产环境有大量的不需要排序的Shuffle类型;

思考:不需要排序的Hash Shuffle是否一定比需要排序的Sorted Shuffle速度更快?不一定!如果数据规模比较小的情形下,Hash Shuffle会比Sorted Shuffle速度快(很多)!但是如果数据量大,此时Sorted Shuffle一般都会比Hash Shuffle快(很多)

3,每个ShuffleMapTask会根据key的哈希值计算出当前的key需要写入的Partition,然后把决定后的结果写入当单独的文件,此时会导致每个Task产生R(指下一个Stage的并行度)个文件,如果当前的Stage中有M个ShuffleMapTask,则会M*R个文件!!!

注意:Shuffle操作绝大多数情况下都要通过网络,如果Mapper和Reducer在同一台机器上,此时只需要读取本地磁盘即可。

Hash Shuffle的两大死穴:第一:Shuffle前会产生海量的小文件于磁盘之上,此时会产生大量耗时低效的IO操作;第二:内存不共用!!!由于内存中需要保存海量的文件操作句柄和临时缓存信息,如果数据处理规模比较庞大的话,内存不可承受,出现OOM等问题!

四:Sorted Shuffle:

为了改善上述的问题(同时打开过多文件导致Writer Handler内存使用过大以及产生过度文件导致大量的随机读写带来的效率极为低下的磁盘IO操作),Spark后来推出了Consalidate机制,来把小文件合并,此时Shuffle时文件产生的数量为cores*R,对于ShuffleMapTask的数量明显多于同时可用的并行Cores的数量的情况下,Shuffle产生的文件会大幅度减少,会极大降低OOM的可能;

为此Spark推出了Shuffle Pluggable开放框架,方便系统升级的时候定制Shuffle功能模块,也方便第三方系统改造人员根据实际的业务场景来开放具体最佳的Shuffle模块;核心接口ShuffleManager,具体默认实现有HashShuffleManager、SortShuffleManager等,Spark 1.6.0中具体的配置如下:

valshortShuffleMgrNames = Map(
"hash" ->"org.apache.spark.shuffle.hash.HashShuffleManager",
"sort" ->"org.apache.spark.shuffle.sort.SortShuffleManager",
"tungsten-sort" ->"org.apache.spark.shuffle.sort.SortShuffleManager")

Spark Shuffle原理解析的更多相关文章

  1. Spark Shuffle原理、Shuffle操作问题解决和参数调优

    摘要: 1 shuffle原理 1.1 mapreduce的shuffle原理 1.1.1 map task端操作 1.1.2 reduce task端操作 1.2 spark现在的SortShuff ...

  2. MapReduce Shuffle原理 与 Spark Shuffle原理

    MapReduce的Shuffle过程介绍 Shuffle的本义是洗牌.混洗,把一组有一定规则的数据尽量转换成一组无规则的数据,越随机越好.MapReduce中的Shuffle更像是洗牌的逆过程,把一 ...

  3. MapReduce Shuffle 和 Spark Shuffle 原理概述

    Shuffle简介 Shuffle的本意是洗牌.混洗的意思,把一组有规则的数据尽量打乱成无规则的数据.而在MapReduce中,Shuffle更像是洗牌的逆过程,指的是将map端的无规则输出按指定的规 ...

  4. spark shuffle原理

    1.spark中窄依赖的时候不需要shuffle,只有宽依赖的时候需要shuffle,mapreduce中map到reduce必须经过shuffle 2.spark中的shuffle fetch的时候 ...

  5. Spark运行原理解析

    前言: Spark Application的运行架构由两部分组成:driver program(SparkContext)和executor.Spark Application一般都是在集群中运行,比 ...

  6. Spark Shuffle的技术演进

      在Spark或Hadoop MapReduce的分布式计算框架中,数据被按照key分成一块一块的分区,打散分布在集群中各个节点的物理存储或内存空间中,每个计算任务一次处理一个分区,但map端和re ...

  7. 【Spark调优】Shuffle原理理解与参数调优

    [生产实践经验] 生产实践中的切身体会是:影响Spark性能的大BOSS就是shuffle,抓住并解决shuffle这个主要原因,事半功倍. [Shuffle原理学习笔记] 1.未经优化的HashSh ...

  8. Spark Shuffle调优原理和最佳实践

    对性能消耗的原理详解 在分布式系统中,数据分布在不同的节点上,每一个节点计算一部份数据,如果不对各个节点上独立的部份进行汇聚的话,我们计算不到最终的结果.我们需要利用分布式来发挥Spark本身并行计算 ...

  9. Spark Shuffle 堆外内存溢出问题与解决(Shuffle通信原理)

    Spark Shuffle 堆外内存溢出问题与解决(Shuffle通信原理) http://xiguada.org/spark-shuffle-direct-buffer-oom/ 问题描述 Spar ...

随机推荐

  1. 并发测试 JavaDemo

    https://github.com/oldratlee/fucking-java-concurrency /** * @author Jerry Lee */ public class Testee ...

  2. 【原创】纯干货,Spring-data-jpa详解,全方位介绍。(转)

    本篇进行Spring-data-jpa的介绍,几乎涵盖该框架的所有方面,在日常的开发当中,基本上能满足所有需求.这里不讲解JPA和Spring-data-jpa单独使用,所有的内容都是在和Spring ...

  3. WPF使用System.Windows.SystemParameters类获得屏幕分辨率

    转自 http://hi.baidu.com/shirley_cst/item/a55c290c8aa2ee2ca0312da3 示例代码如下所示. double x = SystemParamete ...

  4. [Unity3D]Unity3D游戏开发之跑酷游戏项目解说

    大家好,我是秦元培.我參加了CSDN2014博客之星的评选,欢迎大家为我投票,同一时候希望在新的一年里大家能继续支持我的博客. 大家晚上好.我是秦元培,欢迎大家关注我的博客,我的博客地址是blog.c ...

  5. 反转链表(不改变指针)JAVA版

    class ListNode { int val; ListNode next; ListNode(int x) { val = x; next = null; } } public class So ...

  6. Atitit 如何设置与安放知识的trap陷阱  知识聚合 rss url聚合工具 以及与trap的对比

    Atitit 如何设置与安放知识的trap陷阱  知识聚合 rss url聚合工具 以及与trap的对比 1.1. 安放地点 垂直知识网站csdn cnblogs等特定频道栏目,大牛博客 1 1.2. ...

  7. C++标准库及其保留字(关键字)——附:C++标准文档

    引言        C++到目前共发布了4个国际标准:ISO/IEC 14882:1998.ISO/IEC 14882:2003.ISO/IEC 14882:2011.ISO/IEC 14882:20 ...

  8. 生产BackPressure 的代码

    public class BackPressureStatsTrackerImpl implements BackPressureStatsTracker { private static final ...

  9. Why-are-GPUs-well-suited-to-deep-learning

    https://www.quora.com/Why-are-GPUs-well-suited-to-deep-learning http://timdettmers.com/2015/03/09/de ...

  10. An introduction to High Availability Architecture

    https://www.getfilecloud.com/blog/an-introduction-to-high-availability-architecture/ An introduction ...