原文地址C++矩阵库 Eigen 快速入门

不仅有函数的基本形式,还有对应的matlab函数,用起来很方便。
Eigen 矩阵定义

#include <Eigen/Dense>

Matrix<double, 3, 3> A;               // Fixed rows and cols. Same as Matrix3d.
Matrix<double, 3, Dynamic> B; // Fixed rows, dynamic cols.
Matrix<double, Dynamic, Dynamic> C; // Full dynamic. Same as MatrixXd.
Matrix<double, 3, 3, RowMajor> E; // Row major; default is column-major.
Matrix3f P, Q, R; // 3x3 float matrix.
Vector3f x, y, z; // 3x1 float matrix.
RowVector3f a, b, c; // 1x3 float matrix.
VectorXd v; // Dynamic column vector of doubles
// Eigen // Matlab // comments
x.size() // length(x) // vector size
C.rows() // size(C,1) // number of rows
C.cols() // size(C,2) // number of columns
x(i) // x(i+1) // Matlab is 1-based
C(i,j) // C(i+1,j+1) //

Eigen 基础使用

// Basic usage
// Eigen // Matlab // comments
x.size() // length(x) // vector size
C.rows() // size(C,1) // number of rows
C.cols() // size(C,2) // number of columns
x(i) // x(i+1) // Matlab is 1-based
C(i, j) // C(i+1,j+1) // A.resize(4, 4); // Runtime error if assertions are on.
B.resize(4, 9); // Runtime error if assertions are on.
A.resize(3, 3); // Ok; size didn't change.
B.resize(3, 9); // Ok; only dynamic cols changed. A << 1, 2, 3, // Initialize A. The elements can also be
4, 5, 6, // matrices, which are stacked along cols
7, 8, 9; // and then the rows are stacked.
B << A, A, A; // B is three horizontally stacked A's.
A.fill(10); // Fill A with all 10's.

Eigen 特殊矩阵生成

// Eigen                            // Matlab
MatrixXd::Identity(rows,cols) // eye(rows,cols)
C.setIdentity(rows,cols) // C = eye(rows,cols)
MatrixXd::Zero(rows,cols) // zeros(rows,cols)
C.setZero(rows,cols) // C = ones(rows,cols)
MatrixXd::Ones(rows,cols) // ones(rows,cols)
C.setOnes(rows,cols) // C = ones(rows,cols)
MatrixXd::Random(rows,cols) // rand(rows,cols)*2-1 // MatrixXd::Random returns uniform random numbers in (-1, 1).
C.setRandom(rows,cols) // C = rand(rows,cols)*2-1
VectorXd::LinSpaced(size,low,high) // linspace(low,high,size)'
v.setLinSpaced(size,low,high) // v = linspace(low,high,size)'

Eigen 矩阵分块

// Matrix slicing and blocks. All expressions listed here are read/write.
// Templated size versions are faster. Note that Matlab is 1-based (a size N
// vector is x(1)...x(N)).
// Eigen // Matlab
x.head(n) // x(1:n)
x.head<n>() // x(1:n)
x.tail(n) // x(end - n + 1: end)
x.tail<n>() // x(end - n + 1: end)
x.segment(i, n) // x(i+1 : i+n)
x.segment<n>(i) // x(i+1 : i+n)
P.block(i, j, rows, cols) // P(i+1 : i+rows, j+1 : j+cols)
P.block<rows, cols>(i, j) // P(i+1 : i+rows, j+1 : j+cols)
P.row(i) // P(i+1, :)
P.col(j) // P(:, j+1)
P.leftCols<cols>() // P(:, 1:cols)
P.leftCols(cols) // P(:, 1:cols)
P.middleCols<cols>(j) // P(:, j+1:j+cols)
P.middleCols(j, cols) // P(:, j+1:j+cols)
P.rightCols<cols>() // P(:, end-cols+1:end)
P.rightCols(cols) // P(:, end-cols+1:end)
P.topRows<rows>() // P(1:rows, :)
P.topRows(rows) // P(1:rows, :)
P.middleRows<rows>(i) // P(i+1:i+rows, :)
P.middleRows(i, rows) // P(i+1:i+rows, :)
P.bottomRows<rows>() // P(end-rows+1:end, :)
P.bottomRows(rows) // P(end-rows+1:end, :)
P.topLeftCorner(rows, cols) // P(1:rows, 1:cols)
P.topRightCorner(rows, cols) // P(1:rows, end-cols+1:end)
P.bottomLeftCorner(rows, cols) // P(end-rows+1:end, 1:cols)
P.bottomRightCorner(rows, cols) // P(end-rows+1:end, end-cols+1:end)
P.topLeftCorner<rows,cols>() // P(1:rows, 1:cols)
P.topRightCorner<rows,cols>() // P(1:rows, end-cols+1:end)
P.bottomLeftCorner<rows,cols>() // P(end-rows+1:end, 1:cols)
P.bottomRightCorner<rows,cols>() // P(end-rows+1:end, end-cols+1:end)

Eigen 矩阵元素交换

// Of particular note is Eigen's swap function which is highly optimized.
// Eigen // Matlab
R.row(i) = P.col(j); // R(i, :) = P(:, i)
R.col(j1).swap(mat1.col(j2)); // R(:, [j1 j2]) = R(:, [j2, j1])

Eigen 矩阵转置

// Views, transpose, etc; all read-write except for .adjoint().
// Eigen // Matlab
R.adjoint() // R'
R.transpose() // R.' or conj(R')
R.diagonal() // diag(R)
x.asDiagonal() // diag(x)
R.transpose().colwise().reverse(); // rot90(R)
R.conjugate() // conj(R)

Eigen 矩阵乘积

// All the same as Matlab, but matlab doesn't have *= style operators.
// Matrix-vector. Matrix-matrix. Matrix-scalar.
y = M*x; R = P*Q; R = P*s;
a = b*M; R = P - Q; R = s*P;
a *= M; R = P + Q; R = P/s;
R *= Q; R = s*P;
R += Q; R *= s;
R -= Q; R /= s;

Eigen 矩阵单个元素操作

// Vectorized operations on each element independently
// Eigen // Matlab
R = P.cwiseProduct(Q); // R = P .* Q
R = P.array() * s.array();// R = P .* s
R = P.cwiseQuotient(Q); // R = P ./ Q
R = P.array() / Q.array();// R = P ./ Q
R = P.array() + s.array();// R = P + s
R = P.array() - s.array();// R = P - s
R.array() += s; // R = R + s
R.array() -= s; // R = R - s
R.array() < Q.array(); // R < Q
R.array() <= Q.array(); // R <= Q
R.cwiseInverse(); // 1 ./ P
R.array().inverse(); // 1 ./ P
R.array().sin() // sin(P)
R.array().cos() // cos(P)
R.array().pow(s) // P .^ s
R.array().square() // P .^ 2
R.array().cube() // P .^ 3
R.cwiseSqrt() // sqrt(P)
R.array().sqrt() // sqrt(P)
R.array().exp() // exp(P)
R.array().log() // log(P)
R.cwiseMax(P) // max(R, P)
R.array().max(P.array()) // max(R, P)
R.cwiseMin(P) // min(R, P)
R.array().min(P.array()) // min(R, P)
R.cwiseAbs() // abs(P)
R.array().abs() // abs(P)
R.cwiseAbs2() // abs(P.^2)
R.array().abs2() // abs(P.^2)
(R.array() < s).select(P,Q); // (R < s ? P : Q)

Eigen 矩阵化简

// Reductions.
int r, c;
// Eigen // Matlab
R.minCoeff() // min(R(:))
R.maxCoeff() // max(R(:))
s = R.minCoeff(&r, &c) // [s, i] = min(R(:)); [r, c] = ind2sub(size(R), i);
s = R.maxCoeff(&r, &c) // [s, i] = max(R(:)); [r, c] = ind2sub(size(R), i);
R.sum() // sum(R(:))
R.colwise().sum() // sum(R)
R.rowwise().sum() // sum(R, 2) or sum(R')'
R.prod() // prod(R(:))
R.colwise().prod() // prod(R)
R.rowwise().prod() // prod(R, 2) or prod(R')'
R.trace() // trace(R)
R.all() // all(R(:))
R.colwise().all() // all(R)
R.rowwise().all() // all(R, 2)
R.any() // any(R(:))
R.colwise().any() // any(R)
R.rowwise().any() // any(R, 2)

Eigen 矩阵点乘

// Dot products, norms, etc.
// Eigen // Matlab
x.norm() // norm(x). Note that norm(R) doesn't work in Eigen.
x.squaredNorm() // dot(x, x) Note the equivalence is not true for complex
x.dot(y) // dot(x, y)
x.cross(y) // cross(x, y) Requires #include <Eigen/Geometry>

Eigen 矩阵类型转换

//// Type conversion
// Eigen // Matlab
A.cast<double>(); // double(A)
A.cast<float>(); // single(A)
A.cast<int>(); // int32(A)
A.real(); // real(A)
A.imag(); // imag(A)
// if the original type equals destination type, no work is done

Eigen 求解线性方程组 Ax = b

// Solve Ax = b. Result stored in x. Matlab: x = A \ b.
x = A.ldlt().solve(b)); // A sym. p.s.d. #include <Eigen/Cholesky>
x = A.llt() .solve(b)); // A sym. p.d. #include <Eigen/Cholesky>
x = A.lu() .solve(b)); // Stable and fast. #include <Eigen/LU>
x = A.qr() .solve(b)); // No pivoting. #include <Eigen/QR>
x = A.svd() .solve(b)); // Stable, slowest. #include <Eigen/SVD>
// .ldlt() -> .matrixL() and .matrixD()
// .llt() -> .matrixL()
// .lu() -> .matrixL() and .matrixU()
// .qr() -> .matrixQ() and .matrixR()
// .svd() -> .matrixU(), .singularValues(), and .matrixV()

Eigen 矩阵特征值

// Eigenvalue problems
// Eigen // Matlab
A.eigenvalues(); // eig(A);
EigenSolver<Matrix3d> eig(A); // [vec val] = eig(A)
eig.eigenvalues(); // diag(val)
eig.eigenvectors(); // vec
// For self-adjoint matrices use SelfAdjointEigenSolver<>

Eigen中的基本函数 及其对应的matlab函数的更多相关文章

  1. 1.2 eigen中矩阵和向量的运算

    1.2 矩阵和向量的运算 1.介绍 eigen给矩阵和向量的算术运算提供重载的c++算术运算符例如+,-,*或这一些点乘dot(),叉乘cross()等等.对于矩阵类(矩阵和向量,之后统称为矩阵 类) ...

  2. MATLAB 在同一个m文件中写多个独立的功能函数

    MATLAB 在同一个m文件中写多个独立的功能函数,从而实现在外部可以直接调用这个文件中的某一个函数. 鉴于MATLAB的函数文件的函数名与文件名要一样,就需要有一个统一的接口来涵盖这些功能函数. 例 ...

  3. 【从业余项目中学习2】C# 实现调用Matlab函数(Visual Studio:2008, Matlab:R2009a)

    最近正在给客户做的个人项目,要求实现C#与Matlab之间的调用,即C# winform界面收集用户输入的参数,将参数传递给Matlab的算法计算,Matlab函数返回的结果显示在winform界面上 ...

  4. Eigen中的noalias(): 解决矩阵运算的混淆问题

    作者:@houkai本文为作者原创,转载请注明出处:http://www.cnblogs.com/houkai/p/6349990.html 目录 混淆例子解决混淆问题混淆和component级的操作 ...

  5. matlab中可用于进行轮廓提取的函数

    本文主要总结一下在matlab中可用于进行轮廓提取的函数. 1 bwperim 根据参考资料[2]的提示,可以使用bwperim()函数进行轮廓提取,具体代码如下: %读取原图im = imread( ...

  6. Eigen中的矩阵及向量运算

    Eigen中的矩阵及向量运算 ,[+,+=,-,-=] ,[\*,\*=] ,[.transpose()] ,[.dot(),.cross(),.adjoint()] ,针对矩阵元素进行的操作[.su ...

  7. Matlab与C++混合编程 1--在C++中调用自己写的matlab函数

    在Visual Studio中使用C++中调用MATLAB程序 在matlab中可以通过mbuild工具将.m文件编译成dll文件供外部的C++程序调用,这样就可以实现matlab和C++混合编程的目 ...

  8. matlab中exist 检查变量、脚本、函数、文件夹或类的存在情况

    参考: 1.https://ww2.mathworks.cn/help/matlab/ref/exist.html?searchHighlight=exist&s_tid=doc_srchti ...

  9. Lua中的基本函数库--(转自忧郁的加菲猫)

    基本函数库为Lua内置的函数库,不需要额外装载assert (v [, message])功能:相当于C的断言,参数:v:当表达式v为nil或false将触发错误,message:发生错误时返回的信息 ...

随机推荐

  1. 网站性能测试指标(QPS,TPS,吞吐量,响应时间)详解

    转载:http://www.51testing.com/html/16/n-3723016.html   常用的网站性能测试指标有:吞吐量.并发数.响应时间.性能计数器等. 并发数 并发数是指系统同时 ...

  2. numpy和Matplotlib篇---2

    原创博文,转载请标明出处--周学伟http://www.cnblogs.com/zxouxuewei/ 5.3 Python的科学计算包 - Numpy numpy(Numerical Python ...

  3. 2、一、Introduction(入门):1、Application Fundamentals(应用程序基础)

    一.Introduction(入门) 1.Application Fundamentals(应用程序基础) Android apps are written in the Java programmi ...

  4. Win10 虚拟桌面

    我们可以建立多个桌面,各个桌面上运行的窗口任务互不干扰,这就是虚拟桌面 创建虚拟桌面:Win + Ctrl + D查看虚拟桌面:Win + Tab删除当前虚拟桌面:Win + Ctrl + F4切换到 ...

  5. 在linux下如何判断是否已经安装某个软件?

    如果你使用rpm -ivh matlab装的,用rpm -qa | grep matlab肯定是能够找到的. 如果你是用make && make install装的.那么最好直接去找执 ...

  6. matplotlib包画基本的图

    画直线图 1.最简单的用法: import matplotlib.pyplot as plt import numpy as np x=np.linspace(-3,3,50) #在(-1,1)范围内 ...

  7. Androidの矢量图形之VectorDrawable研究

    5.0以上支持VectorDrawable了,可以创建vector的xml资源文件.vector其实就使用来绘制矢量图形的. 看一个例子: <?xml version="1.0&quo ...

  8. 【cs229-Lecture14】主成分分析法

    本节课内容: 因子分析 ---因子分析中的EM步骤的推导过程 主成份分析:有效地降低维度的方法 因子分析 混合高斯模型的问题 接下来讨论因子分析模型,在介绍因子分析模型之前,先看高斯分布的另一种写法, ...

  9. vue案例 - v-model实现自定义样式の多选与单选

    接,上文:https://www.cnblogs.com/padding1015/p/9265985.html 这两天在玩mpvue,但是下午如果对着文档大眼瞪小眼的话,肯定会睡着的. 想起昨晚的fl ...

  10. LeetCode 48 Rotate Image(2D图像旋转问题)

    题目链接: https://leetcode.com/problems/rotate-image/?tab=Description   Problem:给定一个n*n的二维图片,将这个二维图片按照顺时 ...