区域填充函数有 fill(*args, **kwargs) 和fill_between()

1  绘制填充多边形fill()

1.1 语法结构

fill(*args, **kwargs)

args - sequence of x, y, [color]

ax.fill(x, y)                    # a polygon with default color
ax.fill(x, y, "b")               # a blue polygon
ax.fill(x, y, x2, y2)            # two polygons
ax.fill(x, y, "b", x2, y2, "r")  # a blue and a red polygon

kwargs - 对象matplotlib.patches.Polygon的特性(class:`~matplotlib.patches.Polygon` properties)

1.2 示例

基本图形

import numpy as np
import matplotlib.pyplot as plt

x = np.linspace(0, 5 * np.pi, 1000)

y1 = np.sin(x)
y2 = np.sin(2 * x)

plt.plot(x, y1, label="$ y = sin(x) $")
plt.plot(x, y2, label="$ y = sin(2 * x) $")
plt.legend(loc=3)

plt.show()

绘制填充图

import numpy as np
import matplotlib.pyplot as plt

x = np.linspace(0, 5 * np.pi, 1000)

y1 = np.sin(x)
y2 = np.sin(2 * x)

plt.fill(x, y1, color="g", alpha=0.3)
plt.fill(x, y2, color="b", alpha=0.3)

plt.show()

2 函数间区域填充fill_between

2.1 基本语法

两函数间的Y轴方向的填充

plt.fill_between(
    x, y1, y2=0, where=None,
    interpolate=False, step=None,
    hold=None, data=None,
    **kwargs
)

x - array( length N) 定义曲线的 x 坐标

y1 - array( length N ) or scalar 定义第一条曲线的 y 坐标

y2 - array( length N )  or scalar 定义第二条曲线的 y 坐标

where - array of bool (length N), optional, default: None

排除一些(垂直)区域被填充。

注:我理解的垂直区域,但帮助文档上写的是horizontal regions

也可简单地描述为

plt.fill_between(x,y1,y2,where=条件表达式, color=颜色,alpha=透明度)

" where = " 可以省略,直接写条件表达式

2.2 具体示例

import numpy as np
import matplotlib.pyplot as plt

x = np.linspace(0, 5 * np.pi, 1000)

y1 = np.sin(x)
y2 = np.sin(2 * x)

plt.plot(x, y1, c="g")
plt.plot(x, y2, c='r')

# 将两函数间区域填充成浅灰色
plt.fill_between(x, y1, y2, facecolor="lightgray")

plt.show()

通过调换 y1 和 y2 的顺序,图形的 “ 形貌 ” 不发生变化。

将函数复杂化

import numpy as np
import matplotlib.pyplot as plt

x = np.linspace(0, 5 * np.pi, 1000)

y1 = np.sin(x)
y2 = np.sin(2 * x)

plt.plot(x, y1, c="y")
plt.plot(x, y2, c='r')

# 将两函数间区域填充成浅灰色
plt.fill_between(x, y1, y2, facecolor="lightgray")

plt.show()

我们看到,其实只要介于两函数值之间的区域均被 lightgray 颜色填充了。

进一步通过 where = 条件表达式 (这里的 where = 省略了 )该表图形 “ 形貌 ” 。

import numpy as np
import matplotlib.pyplot as plt
n = 1000
x = np.linspace(0, 8 * np.pi, n)
sin_y = np.sin(x)
cos_y = np.cos(x / 2) / 2

plt.figure('Fill', facecolor='lightgray')
plt.title('Fill', fontsize=20)
plt.xlabel('x', fontsize=14)
plt.ylabel('y', fontsize=14)
plt.tick_params(labelsize=10)
plt.grid(linestyle=':')

# 把正弦余弦两条曲线画出
plt.plot(x, sin_y, c='dodgerblue', label=r'$y=sin(x)$')
plt.plot(x, cos_y, c='orangered',
        label=r'$\frac{1}{2}cos(\frac{x}{2})$')

# 填充
plt.fill_between(x, cos_y, sin_y, cos_y < sin_y,
                color='dodgerblue', alpha=0.5)
plt.fill_between(x, cos_y, sin_y, cos_y > sin_y,
                color='orangered', alpha=0.5)

plt.legend(loc = 3)
plt.show()

部分代码来源于:颜色填充(fill & fill_between)

基于matplotlib的数据可视化(图形填充fill fill_between) - 笔记(二)的更多相关文章

  1. 基于matplotlib的数据可视化 - 笔记

    1 基本绘图 在plot()函数中只有x,y两个量时. import numpy as np import matplotlib.pyplot as plt # 生成曲线上各个点的x,y坐标,然后用一 ...

  2. 基于matplotlib的数据可视化 - 等高线 contour 与 contourf

    contour 与contourf 是绘制等高线的利器. contour  - 绘制等高线 contourf - 填充等高线 两个的返回值值是一样的(return values are the sam ...

  3. 基于matplotlib的数据可视化 - 饼状图pie

    绘制饼状图的基本语法 创建数组 x 的饼图,每个楔形的面积由 x / sum(x) 决定: 若 sum(x) < 1,则 x 数组不会被标准化,x 值即为楔形区域面积占比.注意,该种情况会出现 ...

  4. 基于matplotlib的数据可视化 -

    matplotlib.pyplot(as mp or as plt)提供基于python语言的绘图函数 引用方式: import matplotlib.pyplot as mp / as plt 本章 ...

  5. 基于matplotlib的数据可视化 - 柱状图bar

    柱状图bar 柱状图常用表现形式为: plt.bar(水平坐标数组,高度数组,宽度比例,ec=勾边色,c=填充色,label=图例标签) 注:当高度值为负数时,柱形向下 1 语法 bar(*args, ...

  6. 基于matplotlib的数据可视化 - 热图imshow

    热图: Display an image on the axes. 可以用来比较两个矩阵的相似程度 mp.imshow(z, cmap=颜色映射,origin=垂直轴向) imshow( X, cma ...

  7. 基于matplotlib的数据可视化 - 三维曲面图gca

    1 语法 ax = plt.gca(projection='3d')ax.plot_surface(x,y,z,rstride=行步距,cstride=列步距,cmap=颜色映射) gca(**kwa ...

  8. matplotlib实现数据可视化

    一篇matplotlib库的学习博文.matplotlib对于数据可视化非常重要,它完全封装了MatLab的所有API,在python的环境下和Python的语法一起使用更是相得益彰. 一.库的安装和 ...

  9. 使用 jupyter-notebook + python + matplotlib 进行数据可视化

    上次用 python 脚本中定期查询数据库,监视订单变化,将时间与处理完成订单的数量进行输入写入日志,虽然省掉了人为定时查看数据库并记录的操作,但是数据不进行分析只是数据,要让数据活起来! 为了方便看 ...

随机推荐

  1. oauth2-server-php-docs 食谱

    一步一步的演练 以下说明提供详细的演练,以帮助您启动并运行OAuth2服务器.要查看实现此库的现有OAuth2服务器的代码库,请查看OAuth2 Demo. 初始化您的项目 为您的项目创建一个目录,并 ...

  2. Discuz常见小问题-如何为每个板块设置不同的图标

    进入后台的论坛-版块管理,选中要修改图标的板块,点击后面的编辑 在板块图标中找到图标文件,一般是PNG或者GIF,大小为32X32,提交之后效果如下

  3. Android studio 自己定义打包APK名称

    Android Studio打包应用默认生成的apk名称是:app-release.apk .假设我们要让生成的apk名跟我们版本号包名有联系的话.那我们就要自己定义生成的apk名了,要怎么做呢. 我 ...

  4. 微信小程序 - scroll-into-view(提示)

    scroll-view的参数scroll-into-view适用于索引以及回到顶部 .详情见官方文档scroll-view: 点击下载:scroll-into-view示例

  5. MongoDB分片配置系列一:

    接这篇博客: http://www.cnblogs.com/xiaoit/p/4479066.html 这里不再说明安装过程. 1:分片简介 分片是一种将海量的数据水平扩展的数据库集群系统,数据分表存 ...

  6. Android学习笔记一:项目目录结构

    一:Android目录 主要内容有: app目录下: manifests目录: AndroidManifest.xml:APP的配置 java目录:主要为源代码和测试代码 res目录:主要是资源文件, ...

  7. Git 推送和删除远程标签

    事实上Git 的推送和删除远程标签命令是相同的,删除操作实际上就是推送空的源标签refs: git push origin 标签名 相当于 git push origin refs/tags/源标签名 ...

  8. 一个简单的ExtJS搜索建议框

    封装的是一个Ext4.2的组件,继承并兼容于Ext的ComboBox. 实现原理非常easy,在 combo 中监听 keyup 事件就可以. 搜索建议的Combo.基本上全然兼容, 使用方式与Com ...

  9. VREP中的力触觉设备接口(CHAI3D)

    力反馈技术是一种新型的人机交互技术,它允许用户借助力反馈设备触碰.操纵计算机生成的虚拟环境中的物体,并感知物体的运动和相应的力反馈信息,实现人机力觉交互.虽然传统的鼠标.键盘.触摸屏等交互手段可以满足 ...

  10. SpringCloud stream连接RabbitMQ收发信息

    百度上查的大部分都是一些很简单的单消费者或者单生产者的例子,并且多是同一个服务器的配置,本文的例子为多服务器配置下的消费生产和消费者配置. 参考资料:https://docs.spring.io/sp ...