线性代数之SVD与PCA
[作者:byeyear Email:east3@163.com 首发www.cnblogs.com 转载请注明]
回忆学校的美好时光,一起来复习下曾经的课程吧。
1. SVD推荐ams上的一篇文章:
http://www.ams.org/samplings/feature-column/fcarc-svd
下面的文字为简短摘要。
我们知道,如果矩阵A有一组特征值λk和特征向量vk,那么下式成立:
Avk=λvk
矩阵的奇异值σ满足类似的式子,如下所示:
Avk=σkuk
各单位向量vk相互正交;各单位向量uk也相互正交。
以二阶矩阵为例,它有两个奇异值σ1,σ2:
Av1=σ1u1
Av2=σ2u2
v1和v2正交,u1和u2正交,且均为单位向量。对于R2中的任意向量x,若将其投影到span{v1,v2},那么:
Ax=A[(v1·x)v1+(v2·x)v2]
=(v1·x)Av1+(v2·x)Av2
=(v1·x)σ1u1+(v2·x)σ2u2
=u1σ1v1Tx+u2σ2v2Tx // 此处利用了mTnp=pmTn,p,m,n为同阶向量
因此A=u1σ1v1T+u2σ2v2T
写成更一般的矩阵形式,就是:
A=UΣV
其中:
A是mxn矩阵
U=[u1 u2 ... um],是mxm方阵
Σ是主对角线为σ1 ... σn的mxn准对角矩阵
V=[v1 v2 ... vn],是nxn方阵
线性代数之SVD与PCA的更多相关文章
- 机器学习实战基础(二十三):sklearn中的降维算法PCA和SVD(四) PCA与SVD 之 PCA中的SVD
PCA中的SVD 1 PCA中的SVD哪里来? 细心的小伙伴可能注意到了,svd_solver是奇异值分解器的意思,为什么PCA算法下面会有有关奇异值分解的参数?不是两种算法么?我们之前曾经提到过,P ...
- 线性代数之——SVD 分解
SVD 分解是线性代数的一大亮点. 1. SVD 分解 \(A\) 是任意的 \(m×n\) 矩阵,它的秩为 \(r\),我们要对其进行对角化,但不是通过 \(S^{-1}A S\).\(S\) 中的 ...
- 降维方法PCA与SVD的联系与区别
在遇到维度灾难的时候,作为数据处理者们最先想到的降维方法一定是SVD(奇异值分解)和PCA(主成分分析). 两者的原理在各种算法和机器学习的书籍中都有介绍,两者之间也有着某种千丝万缕的联系.本文在简单 ...
- PCA, SVD以及代码示例
本文是对PCA和SVD学习的整理笔记,为了避免很多重复内容的工作,我会在介绍概念的时候引用其他童鞋的工作和内容,具体来源我会标记在参考资料中. 一.PCA (Principle component a ...
- 【SVD、特征值分解、PCA关系】
一.SVD 1.含义: 把矩阵分解为缩放矩阵+旋转矩阵+特征向量矩阵. A矩阵的作用是将一个向量从V这组正交基向量的空间旋转到U这组正交基向量的空间,并对每个方向进行了一定的缩放,缩放因子就是各 ...
- PCA,SVD
PCA的数学原理 https://www.zhihu.com/question/34143886/answer/196294308 奇异值分解的揭秘(二):降维与奇异向量的意义 奇异值分解的揭秘(一) ...
- What is an intuitive explanation of the relation between PCA and SVD?
What is an intuitive explanation of the relation between PCA and SVD? 36 FOLLOWERS Last asked: 30 Se ...
- PCA算法和SVD
如果矩阵对某一个向量或某些向量只发生伸缩变换,不对这些向量产生旋转的效果,那么这些向量就称为这个矩阵的特征向量,伸缩的比例就是特征值.这里可以将特征值为负,特征向量旋转180度,也可看成方向不变,伸缩 ...
- 机器学习降维方法概括, LASSO参数缩减、主成分分析PCA、小波分析、线性判别LDA、拉普拉斯映射、深度学习SparseAutoEncoder、矩阵奇异值分解SVD、LLE局部线性嵌入、Isomap等距映射
机器学习降维方法概括 版权声明:本文为博主原创文章,未经博主允许不得转载. https://blog.csdn.net/u014772862/article/details/52335970 最近 ...
随机推荐
- win7自带wifi win7无线网络共享设置图文方法
win7自带wifi win7无线网络共享设置图文方法 点评:开启windows 7的隐藏功能:虚拟WiFi和SoftAP(即虚拟无线AP),就可以让电脑变成无线路由器,实现共享上网,节省网费和路由器 ...
- L1-040 最佳情侣身高差
专家通过多组情侣研究数据发现,最佳的情侣身高差遵循着一个公式:(女方的身高)×1.09 =(男方的身高).如果符合,你俩的身高差不管是牵手.拥抱.接吻,都是最和谐的差度. 下面就请你写个程序,为任意一 ...
- 集成学习之Boosting —— XGBoost
集成学习之Boosting -- AdaBoost 集成学习之Boosting -- Gradient Boosting 集成学习之Boosting -- XGBoost Gradient Boost ...
- Win10玩游戏时听歌音量忽大忽小
问题原因是你的声卡被识别成了5.1声道,解决方法: 1.右键桌面右下角小喇叭选择“声音” 2.右键当前的播放设备选择“配置扬声器” 3.选择“立体声”,可以测试一下,然后点击下一步退出,可能会中断当前 ...
- Android逆向之旅---Native层的Hook神器Cydia Substrate使用详解
一.前言 在之前已经介绍过了Android中一款hook神器Xposed,那个框架使用非常简单,方法也就那几个,其实最主要的是我们如何找到一个想要hook的应用的那个突破点.需要逆向分析app即可.不 ...
- Laravel学习之旅(二)
控制器 一.怎么编写控制器? 1.控制器文件存放路径:app\Http\Controllers: 2.命名规范如:TestController.php 3.完整的控制器例子如下: <?php n ...
- Word所有字体按比例缩小
ctrl + [ 不然每次都要一部分一部分的修改啊
- 前端css规范
文章整理了Web前端开发中的各种CSS规范,包括文件规范.注释规范.命名规范.书写规范.测试规范等. 一.文件规范 1.文件均归档至约定的目录中(具体要求以豆瓣的CSS规范为例进行讲解): 所有的CS ...
- LG2521 [HAOI2011]防线修建
题意 题目描述 近来A国和B国的矛盾激化,为了预防不测,A国准备修建一条长长的防线,当然修建防线的话,肯定要把需要保护的城市修在防线内部了.可是A国上层现在还犹豫不决,到底该把哪些城市作为保护对象呢? ...
- Eclipse+Spring学习(一)环境搭建(转)
最近由于投了一家公司实习,他要java工程师,而我大学3年的精力都花到了ASP.NET和前端上面,到找工作的时候才发现大公司不要.NET的,所以马上转型java...由于网上的高手都不屑于写这类文章, ...