http://www.jianshu.com/p/cccc56e39429/comments/2022782 和 https://github.com/elastic/elasticsearch-hadoop/issues/745 都有提到通过自定义Spark Partitioner提升es-hadoop Bulk效率,但是无可运行代码,自己针对其思路在spark-shell里实现了一份。

思路:

spark streming监控/tmp/data下的新文件,并将文中每行内容存储到ES的web/blog索引里!

注意:代码里使用了doc ID来定制路由,该id为自动生成的uuid!因此在启动ES后,需要:

curl -s -XPUT localhost:/web -d '
{
"mappings": {
"blog": {
"_id": {
"path": "uuid"
},
"properties": {
"title": {
"type": "string",
"index": "analyzed"
}
}
}
}
}'

告诉ES使用blog document中的uuid字段作为_id。ES 2.0以后见 http://stackoverflow.com/questions/32334709/how-to-set-id-in-elasticsearch-2-0

下面是spark-shell代码:

import org.apache.spark._
import org.apache.spark.streaming._
import org.elasticsearch.spark._
import org.apache.spark.Partitioner
import org.elasticsearch.hadoop.cfg.PropertiesSettings
import org.elasticsearch.spark.cfg.SparkSettingsManager
import org.elasticsearch.hadoop.cfg.Settings
import org.elasticsearch.hadoop.rest.RestRepository
import scala.collection.JavaConversions._ // 为方便测试,下面是自己用scala实现的es hash函数
// 尤其注意:在生产环境下,使用ES jar包里的函数,位置为:
// https://github.com/elastic/elasticsearch/blob/master/core/src/main/java/org/elasticsearch/cluster/routing/Murmur3HashFunction.java
object Murmur3HashFunction {
def hash(routing: String): Int = {
val bytesToHash = Array.ofDim[Byte](routing.length * 2)
for (i <- 0 until routing.length) {
val c = routing.charAt(i)
val b1 = c.toByte
val b2 = (c >>> 8).toByte
assert(((b1 & 0xFF) | ((b2 & 0xFF) << 8)) == c)
bytesToHash(i * 2) = b1
bytesToHash(i * 2 + 1) = b2
}
hash(bytesToHash, 0, bytesToHash.length)
} def hash(bytes: Array[Byte], offset: Int, length: Int): Int = {
murmurhash3_x86_32(bytes, offset, length, 0)
} def murmurhash3_x86_32(data: Array[Byte],
offset: Int,
len: Int,
seed: Int): Int = {
val c1 = 0xcc9e2d51
val c2 = 0x1b873593
var h1 = seed
val roundedEnd = offset + (len & 0xfffffffc)
var i = offset
while (i < roundedEnd) {
var k1 = (data(i) & 0xff) | ((data(i + 1) & 0xff) << 8) | ((data(i + 2) & 0xff) << 16) |
(data(i + 3) << 24)
k1 *= c1
k1 = (k1 << 15) | (k1 >>> 17)
k1 *= c2
h1 ^= k1
h1 = (h1 << 13) | (h1 >>> 19)
h1 = h1 * 5 + 0xe6546b64
i += 4
}
var k1 = 0
len & 0x03 match {
case 3 => k1 = (data(roundedEnd + 2) & 0xff) << 16
case 2 => k1 |= (data(roundedEnd + 1) & 0xff) << 8
case 1 =>
k1 |= (data(roundedEnd) & 0xff)
k1 *= c1
k1 = (k1 << 15) | (k1 >>> 17)
k1 *= c2
h1 ^= k1
case _ => //break
}
h1 ^= len
h1 ^= h1 >>> 16
h1 *= 0x85ebca6b
h1 ^= h1 >>> 13
h1 *= 0xc2b2ae35
h1 ^= h1 >>> 16
h1
}
} // 自定义Partitioner
class ESShardPartitioner(settings: String) extends Partitioner {
protected var _numPartitions = -1 override def numPartitions: Int = {
val newSettings = new PropertiesSettings().load(settings)
// 生产环境下,需要自行设置索引的 index/type,我是以web/blog作为实验的index
newSettings.setResourceRead("web/blog") // ******************** !!! modify it !!! ********************
newSettings.setResourceWrite("web/blog") // ******************** !!! modify it !!! ********************
val repository = new RestRepository(newSettings)
val targetShards = repository.getWriteTargetPrimaryShards(newSettings.getNodesClientOnly())
repository.close()
_numPartitions = targetShards.size()
_numPartitions
} override def getPartition(docID: Any): Int = {
var shardId = Murmur3HashFunction.hash(docID.toString()) % _numPartitions;
if (shardId < 0) {
shardId += _numPartitions;
}
shardId
}
} sc.getConf.setMaster("local").setAppName("RDDTest").set("es.nodes", "127.0.0.1").set("spark.serializer", "org.apache.spark.serializer.KryoSerializer").set("es.index.auto.create", "true");
val ssc = new StreamingContext(sc, Seconds(2));
val fileStream = ssc.textFileStream("/tmp/data"); fileStream.foreachRDD { rdd => {
def makeItem(content: String) : (String, Map[String,String]) = {
val uuid = java.util.UUID.randomUUID.toString();
(uuid, Map("content"->content, "uuid"->uuid))
}
println("********************start*************************");
var r2 = rdd.map(makeItem);
val sparkCfg = new SparkSettingsManager().load(rdd.sparkContext.getConf)
val settings = sparkCfg.save();
var r3 = r2.partitionBy(new ESShardPartitioner(settings));
r3.map(x=>x._2).saveToEs("web/blog")
println("data count: " + rdd.count.toString);
println("*********************end************************");
}}; ssc.start();
ssc.awaitTermination();

运行方法:

./spark-shell --jars ../lib/elasticsearch-spark-1.2_2.10-2.1.2.jar

然后在spark shell里运行上述代码。

通过shell 伪造数据:

mkdir /mmp/data
#rm -rf /tmp/ ata"
rm -f "/tmp/data/*"
for ((j=;j<;j++)); do
{
for ((i=;i<;i++)); do
file_name=`python -c 'import random;print random.random()'`
echo "$j $i is sad story." >"/tmp/data/$file_name.log"
done
sleep
}
done
echo "OK, waiting..."
echo "done"

运行上述脚本,看到spark shell里显示:

见http://www.cnblogs.com/bonelee/p/6078956.html ES路由底层实现!

自定义Spark Partitioner提升es-hadoop Bulk效率的更多相关文章

  1. 自定义Spark Partitioner提升es-hadoop Bulk效率——续

    对于es 2.4版本,要能定制spark partitioner需要如下方式启动spark shell: spark-2.0.0-bin-hadoop2.6/bin/spark-shell --jar ...

  2. Spark自定义分区(Partitioner)

    我们都知道Spark内部提供了HashPartitioner和RangePartitioner两种分区策略,这两种分区策略在很多情况下都适合我们的场景.但是有些情况下,Spark内部不能符合咱们的需求 ...

  3. 提升 Hive Query 执行效率 - Hive LLAP

    从 Hive 刚推出到现在,得益于社区对它的不断贡献,使得 Hive执行 query 效率显著提升.其中比较有代表性的功能如 Tez (将多个 job整合为一个DAG job)以及 CBO(Cost- ...

  4. 提升你的开发效率,10 个 NPM 使用技巧

    对于一个项目,常用的一些npm简单命令包含的功能有:初始化一个文件夹(npm init),下载npm模块(npm install),创建测试(npm test) 和自定义脚本(npm run).但是, ...

  5. atitit.提升软件开发的效率and 质量的那些强大概念and方法总结

    atitit.提升软件开发的效率and 质量的那些强大概念and方法总结 1. 主流编程中三个最糟糕的问题 1 1.1. 从理解问题后到实现的时间很长 1 1.2. 理解和维护代码  2 1.3. 学 ...

  6. Spark环境搭建(五)-----------Spark生态圈概述与Hadoop对比

    Spark:快速的通用的分布式计算框架 概述和特点: 1) Speed,(开发和执行)速度快.基于内存的计算:DAG(有向无环图)的计算引擎:基于线程模型: 2)Easy of use,易用 . 多语 ...

  7. 面试系列九 es 提高查询效率

    ,es性能优化是没有什么银弹的,啥意思呢?就是不要期待着随手调一个参数,就可以万能的应对所有的性能慢的场景.也许有的场景是你换个参数,或者调整一下语法,就可以搞定,但是绝对不是所有场景都可以这样. 一 ...

  8. 分布式协同AI基准测试项目Ianvs:工业场景提升5倍研发效率

    摘要:全场景可扩展的分布式协同AI基准测试项目 Ianvs(雅努斯),能为算法及服务开发者提供全面开发套件支持,以研发.衡量和优化分布式协同AI系统. 本文分享自华为云社区<KubeEdge|分 ...

  9. CSharpGL(30)用条件渲染(Conditional Rendering)来提升OpenGL的渲染效率

    CSharpGL(30)用条件渲染(Conditional Rendering)来提升OpenGL的渲染效率 当场景中有比较复杂的模型时,条件渲染能够加速对复杂模型的渲染. 条件渲染(Conditio ...

随机推荐

  1. 20145314郑凯杰《网络对抗技术》PE文件病毒捆绑(插入捆绑)的实现

    20145314郑凯杰<网络对抗技术>PE文件病毒捆绑(插入捆绑)的实现 一.本节摘要 简介:每个应用程序内部都有一定的空间(因为文件对齐余留的00字段)可以被利用,这样就可以保证被插入的 ...

  2. 微信小程序——2、配置json文件

    配置文件详解 主配置文件app.json 主配置文件位于主目录中,用于进行全局配置.包括页面文件的路径.窗口表现.设置网络超时时间.设置多tab等 下面通过微信最初自带小程序来学习 { "p ...

  3. 20165310_Exp2实验三《敏捷开发与XP实践》

    20165310 java_exp3 敏捷开发与XP实践 一.编码标准 编程标准包含:具有说明性的名字.清晰的表达式.直截了当的控制流.可读的代码和注释,以及在追求这些内容时一致地使用某些规则和惯用法 ...

  4. JavaScript 开闭原则OCP

    代码: <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3. ...

  5. requirejs概念

  6. Unity3D学习笔记(十四):Animation旧动画

        animator(新动画系统):骨骼动画,骨骼驱动,格式化编辑,动画机图形化 animation(旧动画系统):物理系统,帧动画 一.如何建立动画文件 Animation Clip 手动添加动 ...

  7. 02_Flume1.6.0安装及单节点Agent实践

    Flume1.6.0的安装1.上传Flume-1.6.0-tar.gz到待部署的所有机器     以我的为例: /usr/local/src/ 2.解压得到flume文件夹      # tar -x ...

  8. UVa 11292 勇者斗恶龙

    https://vjudge.net/problem/UVA-11292 题意:有n条任意个头的恶龙,你希望雇一些其实把它杀死.一个能力值为x的骑士可以砍掉恶龙一个直径不超过x的头,且需要支付x个金币 ...

  9. XML序列化、反序列化

    using System; using System.Collections.Generic; using System.IO; using System.Linq; using System.Run ...

  10. GATK--使用转载

    http://blog.sciencenet.cn/blog-1469385-819498.html 文章目录 一.准备工作 二.流程概览 三.流程 首先说说GATK可以做什么.它主要用于从seque ...