EM的算法流程:

初始化分布参数θ;

重复以下步骤直到收敛

        E步骤:根据参数初始值或上一次迭代的模型参数来计算出隐性变量的后验概率,其实就是隐性变量的期望。作为隐藏变量的现估计值:

       

        M步骤:将似然函数最大化以获得新的参数值:

这个不断的迭代,就可以得到使似然函数L(θ)最大化的参数θ了。那就得回答刚才的第二个问题了,它会收敛吗?

感性的说,因为下界不断提高,所以极大似然估计单调增加,那么最终我们会到达最大似然估计的最大值。理性分析的话,就会得到下面的东西:

具体如何证明的,看推导过程参考:Andrew Ng《The EM algorithm》

http://www.cnblogs.com/jerrylead/archive/2011/04/06/2006936.html

EM算法另一种理解

坐标上升法(Coordinate ascent):

图中的直线式迭代优化的路径,可以看到每一步都会向最优值前进一步,而且前进路线是平行于坐标轴的,因为每一步只优化一个变量。

这犹如在x-y坐标系中找一个曲线的极值,然而曲线函数不能直接求导,因此什么梯度下降方法就不适用了。但固定一个变量后,另外一个可以通过求导得到,因此可以使用坐标上升法,一次固定一个变量,对另外的求极值,最后逐步逼近极值。对应到EM上,E步:固定θ,优化Q;M步:固定Q,优化θ;交替将极值推向最大。

EM的应用

EM算法有很多的应用,最广泛的就是GMM混合高斯模型、聚类、HMM等等。具体可以参考JerryLead的cnblog中的Machine Learning专栏:

  (EM算法)The EM Algorithm

  混合高斯模型(Mixtures of Gaussians)和EM算法

  K-means聚类算法

http://blog.csdn.net/zouxy09/article/details/8537620

【机器学习】EM的算法的更多相关文章

  1. 机器学习-EM算法笔记

    EM算法也称期望最大化(Expectation-Maximum,简称EM)算法,它是一个基础算法,是很多机器学习领域算法的基础,比如隐式马尔科夫算法(HMM), LDA主题模型的变分推断,混合高斯模型 ...

  2. 【原创】机器学习之PageRank算法应用与C#实现(2)球队排名应用与C#代码

    在上一篇文章:机器学习之PageRank算法应用与C#实现(1)算法介绍 中,对PageRank算法的原理和过程进行了详细的介绍,并通过一个很简单的例子对过程进行了讲解.从上一篇文章可以很快的了解Pa ...

  3. 【原创】机器学习之PageRank算法应用与C#实现(1)算法介绍

    考虑到知识的复杂性,连续性,将本算法及应用分为3篇文章,请关注,将在本月逐步发表. 1.机器学习之PageRank算法应用与C#实现(1)算法介绍 2.机器学习之PageRank算法应用与C#实现(2 ...

  4. 机器学习十大算法之KNN(K最近邻,k-NearestNeighbor)算法

    机器学习十大算法之KNN算法 前段时间一直在搞tkinter,机器学习荒废了一阵子.如今想重新写一个,发现遇到不少问题,不过最终还是解决了.希望与大家共同进步. 闲话少说,进入正题. KNN算法也称最 ...

  5. 机器学习中的算法-决策树模型组合之随机森林与GBDT

    机器学习中的算法(1)-决策树模型组合之随机森林与GBDT 版权声明: 本文由LeftNotEasy发布于http://leftnoteasy.cnblogs.com, 本文可以被全部的转载或者部分使 ...

  6. 机器学习十大算法 之 kNN(一)

    机器学习十大算法 之 kNN(一) 最近在学习机器学习领域的十大经典算法,先从kNN开始吧. 简介 kNN是一种有监督学习方法,它的思想很简单,对于一个未分类的样本来说,通过距离它最近的k个" ...

  7. 【转载】NeurIPS 2018 | 腾讯AI Lab详解3大热点:模型压缩、机器学习及最优化算法

    原文:NeurIPS 2018 | 腾讯AI Lab详解3大热点:模型压缩.机器学习及最优化算法 导读 AI领域顶会NeurIPS正在加拿大蒙特利尔举办.本文针对实验室关注的几个研究热点,模型压缩.自 ...

  8. 机器学习&深度学习基础(机器学习基础的算法概述及代码)

    参考:机器学习&深度学习算法及代码实现 Python3机器学习 传统机器学习算法 决策树.K邻近算法.支持向量机.朴素贝叶斯.神经网络.Logistic回归算法,聚类等. 一.机器学习算法及代 ...

  9. 机器学习中的算法(2)-支持向量机(SVM)基础

    版权声明:本文由LeftNotEasy发布于http://leftnoteasy.cnblogs.com, 本文可以被全部的转载或者部分使用,但请注明出处,如果有问题,请联系wheeleast@gma ...

随机推荐

  1. 【DeepLearning】Exercise:Convolution and Pooling

    Exercise:Convolution and Pooling 习题链接:Exercise:Convolution and Pooling cnnExercise.m %% CS294A/CS294 ...

  2. mysql配置文件 /etc/my.cnf 详细解释

    basedir = path 使用给定目录作为根目录(安装目录). character-sets-dir = path 给出存放着字符集的目录. datadir = path 从给定目录读取数据库文件 ...

  3. linux文件系统 - 初始化(二)

    加载initrd(上) 一.目的 本文主要讲述linux3.10文件系统初始化过程的第二阶段:加载initrd. initrd是一个临时文件系统,由bootload负责加载到内存中,里面包含了基本的可 ...

  4. 记一次在线安装postgresql-9.4的问题

    一.在线安装 apt-get install postgresql-9.4 二.运行状态 systemctl status postgresql 显示运行正常,但是却没有启动默认的5432监听端口 三 ...

  5. vue 关于deep watch / computed 监听不到 vuex state 对象变化的的问题

    简而言之,如果vuex state 中是一个对象 {},那么监听就会有问题.先给出解决方案: // 超简易拷贝(如果是深拷贝还多此一举把get/set拷贝进去了,所以用简易拷贝即可) let __VA ...

  6. javaScript的变量

    1.声明 用 var 或 let 声明的未赋初值的变量,值会被设定为undefined(译注:即未定义值,本身也是一个值) 试图访问一个未初始化的变量会导致一个 ReferenceError 异常被抛 ...

  7. 解决 p0sixspwn-v1.0.4 win版 无法定位程序输入点sqlite3_wal_checkpoint的问题

    p0sixspwn-v1.0.4 win版今天早晨发现大神( @winocm · @iH8sn0w · @SquiffyPwn) 已经发布. 下载下来运行之,发现会报错: 无法定位程序输入点sqlit ...

  8. Kubernetes的系统架构与设计理念

    Kubernetes与云原生应用简介 随着Docker技术的发展和广泛流行,云原生应用和容器调度管理系统也成为IT领域大热的词汇.事实上,云原生应用的思想,在Docker技术火爆之前,已经由云计算技术 ...

  9. [转] Entity Framework 无法加载指定的元数据资源。

    Entity Framework 发布以来,本人也一直在用,深感好用,忍不住地要感谢微软啊!由于项目结构创建完成后,没怎么改动过,所以一直没出题过问题,可最近由于改动了下命名空间,问题来了,正是标题中 ...

  10. 关于ios7的适配问题

    过年回来一直搞ios7的项目适配,也算是有些眉目. 方法一:直接动用Window #if __IPHONE_OS_VERSION_MAX_ALLOWED>=__IPHONE_7_0 [appli ...